
P M

S I I E
M’ D M E

S -
-

A : P. L V
I : D. L C

M L
P ID

A −

ii

iii

Mathematics is the art of giving the same name to different things.

Henri Poincaré

Equipped with his five senses, man explores the universe around him and
calls the adventure Science.

Edwin Powell Hubble

iv

Abstract

The present work originates from the internship that I did at Rolls-Royce
plc, in Derby (UK) between June and December 2015. The job was con-
cerned with the unifying problem of shape optimization for the flow in
an S-duct, a particular type of S-shaped duct. From this starting point
two main directions are investigated in this work. The first one, which is
more theoretical, is concerned with the spectral analysis of the flow under
investigation. Here I show how spectral analysis, which I performed with
a software I created (in C++) during the internship, is able to identify the
main features, or coherent structures, of the flow and how this can be
used to efficiently extract a great deal of useful information. In particu-
lar, I describe how spectral analysis can be used to define smart stopping
criteria and, more concerned with the original problem, some refined cost
functionals to drive a shape optimization procedure. All these uses be-
long in the category of real-time post-processing, the practice of using
post-processing techniques while the simulation is still being run, which
is a popular topic at the moment of writing. In the second part, which
I developed concurrently, I tackle the more practical problem of defining
and setting up a fully-fledged shape optimization procedure. Concerning
this, I developed a collection of scripts (bash, Python, Lua) and configura-
tion files for various applications that can now interface with each other
in an automated way and make up the components of the optimization
loop. I was also able to run said loop with a sample configuration and
showed that very promising results can be obtained even with very little
computational effort. Although less scientific innovation is involved in
this second task, it was still of great relevance to the company, which
demanded that I spent a good share of my time on it and achieved sig-
nificant results.

v

Sommario

Il presente lavoro origina dal tirocinio che ho svolto presso Rolls-Royce
plc, a Derby (UK) tra Giugno e Dicembre 2015. Il lavoro è stato focalizzato
sull’ampio problema dell’ottimizzazione di forma per il flusso in un S-duct,
un particolare tipo di condotto a forma di S. Da questo punto di partenza
si sono diramate due direzioni principali su cui ho lavorato. La prima,
a carattere più teorico, riguarda l’analisi spettrale del flusso in esame. In
questa parte mostro come l’analisi spettrale, che eseguo con un codice
da me scritto (in C++) durante il tirocinio, è in grado di identificare le
caratteristiche principali, o strutture coerenti, del flusso e come questo
può essere usato per estrarre una gran quantità di informazioni utili. In
particolare, descrivo come l’analisi spettrale possa essere usata per defini-
re dei criteri d’arresto migliori e, in relazione al problema originale, dei
funzionali costo più raffinati per guidare il processo di ottimizzazione di
forma. Tutti questi utilizzi fanno parte della categoria del post-processing
in tempo reale, la pratica di utilizzare tecniche di post-processing mentre
la simulazione è ancora in esecuzione, un argomento molto popolare al
momento della stesura di questo documento. Nella seconda parte, che ho
portato avanti simultaneamente, mi occupo del problema, di carattere più
pratico, della definizione e configurazione di una procedura di ottimizza-
zione di forma completa. Per questo scopo ho creato una collezione di
script (in bash, Python e Lua) e file di configurazione per varie applicazio-
ni che adesso possono interfacciarsi l’un l’altra in maniera automatizzata
e formano le componenti del ciclo di ottimizzazione. Sono anche stato
in grado di eseguire questo ciclo con una configurazione di esempio ed
ho mostrato come si possano ottenere risultati molto promettenti anche
con poco sforzo computazionale. Sebbene questa seconda parte coinvolga
meno innovazione scientifica, è stata comunque di grande rilevanza per
la compagnia, la quale ha richiesto che ci dedicassi buona parte del mio
tempo, raggiungendo risultati significativi.

vi

Acknowledgements

All journeys come to an end, eventually. All of them, thus including this.
Now that I am writing the last chapter of this thesis, and I am so close
to the completion of the work, I cannot keep myself from looking over
my shoulder at all the people who pushed me to get here, for as far as I
have gone, I have to admit I do not think I could have possibly made it
without them. I am happy the list is quite long so, my dear reader, take
your time.

I first need to thank Luigi Capone, who has been a mentor, other than
just an industrial supervisor. From our talking I learnt many invaluable
things I could never find on textbooks on the rules of the new world I
have first been exposed to under your guidance.

I also need to express my gratitude to my academic supervisor Profes-
sor Lorenzo Valdettaro. I much appreciate the great help and the prompt
support I received, despite the obvious geographical obstacles, especially
in last month’s final rally.

I strongly wish to acknowledge the endless support of my parents. Not
only on the financial side, without whom I would have been lost, but
also, and especially, for supporting me in whatever adventure I decide to
embark upon. Knowing that moving to another country will not make
you completely alone is a great boost.

Not completely alone, actually, for lately I never was. Miriam took
great care in ensuring that I never felt alone during my stay, not a single
day. I wish to thank you for being part of my journey, and a particularly
spicy one; perhaps inadvertently, you taught me a lot about love that I
simply conjectured I knew already, and you definitely proved Ovid right
in saying that love is a kind of warfare.

Not completely alone, as I was saying, for on the other side of the
Channel there was a friend already waiting for me, that managed to make
everything much less rough than it could have been, despite the inevitable
cultural clash. Thank you, Josh, for your priceless help in moving in and
adapting to the new culture.

As always, I am deeply indebted to David for being the wonderful
master, advisor and, more importantly, friend that he is. Wherever you
are and whatever you are doing, I know that I can always disturb you

vii

viii

with some weird doubt about some weird topic, and I am grateful for
that.

A big, comprehensive goes to the many friends that I have
met in the years and have been walking alongside me: Francesco, for
having been very close all the way down the course of study; Roberto,
for always providing a valuable, different point of view; Marco, for the
warm welcome in his circle; quickly cascading to Francesca, Giulio, Alì,
Francesca, Luca, Pasquale, Francesco, Lucio, Luca, Luca, Camillo and
all the ones I forgot.

Wow, now that’s quite a list.

Contents

1 An extended introduction 1
1.1 Large Eddy Simulations . 1
1.2 Shape optimisation . 2
1.3 Post-processing techniques and spectral analysis 3

1.3.1 Proper Orthogonal Decomposition 4
1.3.2 Dynamic Mode Decomposition 4

1.4 Graphical Processing Units . 5
1.5 OP2 . 6
1.6 Plan of the work . 8

2 Computational Fluid Dynamics 9
2.1 Compressible fluid dynamics 9

2.1.1 Mass conservation . 10
2.1.2 Momentum equation 10
2.1.3 Equations closure . 11

2.2 The Rolls-Royce software HYDRA 11
2.3 Statement of the problem . 12
2.4 Methods . 14

3 GPUs and OP2 17
3.1 More details on GPU architectures 17
3.2 More details on OP2 . 18
3.3 Testing OP2: the Heat application 23

3.3.1 Finite differences version and CPU performance . . . 24
3.3.2 Finite volumes version and GPU performance 25

3.4 Final remarks on OP2 and dynamic compilation 28

4 RANS and LES 29
4.1 Mesh assessment and parameters 29
4.2 RANS . 32
4.3 LES . 35

ix

x Contents

5 Post-processing tools and techniques 37
5.1 The identification of coherent structures 37
5.2 Detailed description of POD and DMD 38

5.2.1 POD . 38
5.2.2 DMD . 41

5.3 The need for a linear algebra back-end 43
5.4 Detailed description of Spectre 45

5.4.1 Mesh reader module . 46
5.4.2 Dataset module . 48
5.4.3 Distortion indexes and spectral analysis 48

5.5 Validation of POD and DMD 49
5.5.1 POD validation . 49
5.5.2 DMD validation . 53

5.6 Performance and scalability analysis 55
5.7 Issues and improvements . 56
5.8 Spectral analysis results . 57

6 Optimization 65
6.1 Shape optimization . 65
6.2 Free-Form Deformation . 66
6.3 Smart Optimisation For Turbomachinery 68
6.4 Design of Experiments . 69
6.5 Summary of the optimization procedure 70
6.6 Shape optimization results . 72

Conclusions 77

Bibliography 79

Chapter 1

An extended introduction

In this chapter we present the background material we will refer to
throughout the rest of the work.

1.1 Large Eddy Simulations

With the name Large Eddy Simulations (LES) we refer to a turbulence
model for fluid dynamics simulations. This method is relatively new and
in recent years its popularity has been growing in the realm of industrial
applications, as it earlier did in the academic one. Several monographs
are available on this method, which is used both in compressible and
incompressible fluid flows, see for example Pope [Pop00], Garnier et al.
[GAS09], and Sagaut [Sag06].

The idea behind an LES is to fully resolve the coarser flow scales as
if it were a Direct Numerical Simulation (DNS) and model only the finer
ones, introducing the so-called subgrid stress tensor. This is the result of
a filtering operation as detailed in the following.

We define the filtering f of a function f(x, t) on a domain E as

f(x, t) =
∫
E

f(x− r, t)G(r,x) dr. (1.1)

The function G is called the filter and has unit integral norm. The dif-
ference between the original function and the filtered function is called
residual variable and denoted by f ′ := f− f.

Let us now turn our attention to the filtering of the Navier-Stokes
equations: starting from the regular continuity and momentum equations

∇·u = 0
∂tu+∇·(u⊗ u) = −∇p+ 2ν∇·S(u),

(1.2)

where S(u) = sym∇u = ∇u+∇uT

2 is the symmetric part of the gradient of

1

2 Chapter 1. An extended introduction

u, we apply a homogeneous filter∗, which has the property that its filter
(the integral kernel) does not depend on x, to get

∇·u = 0
∇·u ′ = 0

∂tu+∇·(u⊗ u) = −∇p+ 2ν∇·S(u) −∇·(τ).
(1.3)

The term τ, of elements τij = ∇·(uiuj − ui uj), is the subgrid stress
tensor. The various LES models differ in how they model this tensor.
Many models can be found in the literature, ranging from turbulent vis-
cosity models, where the modeled scales are assumed to simply increase
the flux viscosity, to the more complex dynamical models.

Large Eddy Simulations are very different from more classic Reynolds-
Averaged Navier-Stokes (RANS) simulations. In the latter, the flow vari-
able is decomposed in its mean and the associate fluctuation u = u+(u−
u) = u + u ′, resulting is the terms {(u ′iu ′j)}, i, j = 1, 2, 3 of a symmetric
tensor to be modeled. In a RANS simulation, the whole flow is influenced
by the modelling and what one eventually computes is the mean flow. For
this reason, RANS simulations can be done on a reasonably coarse grid,
whereas Large Eddy Simulations need finer grids to be able to resolve the
non modeled flow scales. Large Eddy Simulations are also necessarily
time dependent, whereas a RANS simulation can easily be formulated
for statistically steady state problems. The latest two statements suggest
that the computational effort required to perform an LES is significantly
higher than that for a RANS simulation; this is indeed the case and one
of the reasons why Large Eddy Simulations are shyly appearing in indus-
trial applications, now that supercomputing power is more easily available
than in a not too far past.

1.2 Shape optimisation

Shape optimisation is a topic of central importance in a wide range of
applications of industrial relevance. The concept itself of being able to
choose the best shape for something should suggest, even to the unaware
reader, that uncountable scenarios can benefit from the mastery of this
technique.

In the framework of Computational Fluid Dynamics (CFD), the need
to design a system in a way that can control some output quantities is
ubiquitous: from drag-minimising airfoils to more efficient turbine blades,
component designers are always looking for a shape that is somehow
better that the others.

∗This implies we can commute filtering and differentiation.

1.3. Post-processing techniques and spectral analysis 3

The mathematical formulation of the problem of shape optimisation
is the following: one could think of a shape optimisation problem as the
problem of finding the minimum (or maximum) of a given functional J(Ω)
over a set Uad of the admissible shapes, or

min
Ω∈Uad

J(Ω).

What makes this problem challenging is that the dependence of J on
Ω is indirect, in the sense that most commonly J(Ω) = J̃(u(Ω)), where
u is the solution of some Partial Differential Equation (PDE) at hand.
Think, for example, of Ω as being the shape of an airfoil, J the drag on
the airfoil, and u the velocity and pressure field on the given shape Ω.
It is clear that changing Ω changes u, and thus one is required to solve
again the PDE that defines u, adding to the computational cost of the
whole procedure. On top of this, the set Uad of admissible shapes must
be chosen in a way that the underlying PDE problem is still well defined.

Due to the computational cost and the intrinsic difficulty of mathe-
matically defining the set Uad, a classic approach in shape optimisation
for engineering applications was based on describing the computational
domain by means of a small set of parameters and then recasting the
shape optimisation problem as a multivariable real optimisation problem.
[Sha00; SSG14; SC14].

More recently, advances in the mathematical theory of PDEs gave rise
to a new flavour of shape optimisation, based on the treatment of the
domain in a topological way, and introducing new objects like the shape
derivative. [SZ92; NS13]. This new method is object of active research
at the moment, but has not yet gained much popularity in industrial
applications.

1.3 Post-processing techniques and spectral analy-
sis

With the growth of computing power, bigger and bigger problems were
attacked, leading to ever growing amounts of data produced by numerical
simulations. Soon, the need to extrapolate meaningful information from
the results rose, and a variety of techniques were developed to meet it.
The collection of the theory and methods that address this issue is known
as post-processing.

A field in which post-processing techniques grew quite popular is that
of CFD, for example with respect to the problem of the identification of
coherent structures in a flow field. A fairly comprehensive review of the
most common post-processing approaches employed to tackle this problem
can be found in von Terzi et al. [vTSF09].

4 Chapter 1. An extended introduction

1.3.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was first introduced by
Kosambi [Kos43] (see also [Nar11]) and later spread out in a variety of
fields ranging from mathematics to statistics and a number of areas in
engineering, where it also acquired several new names, becoming known
also as Principal Component Analysis or Karhunen-Loève expansion, for
example. A very good introduction to the POD can be found in Chatterjee
[Cha00]

POD is a classic technique in the post-processing toolbox, and in fact
was used extensively over the years. Moreover, although it can be (in-
dependently) interpreted as a pure linear algebra thing, it is known to
have a meaningful physical interpretation: see for example Kerschen et
al. [KG02] for an interpretation in structural mechanics.

A well known use of POD is for the purpose of model reduction of
a system, as reported in Kerschen et al. [Ker+05], but other applications,
with focus on the field of CFD, is in the analysis of turbulent flows by
means of the extraction of the underlying coherent structures. [BHL93;
Hol+12; MEH12].

The POD has a handful of interesting properties. First of all, as will
be detailed in Chapter 5, its mathematical formulation is always well
posed, so there is the guarantee that a result will be provided by the
implementing procedure. This is a robustness property very valuable in
many fields of Engineering.

Secondly, the method is parameter-free, so no tuning of constants
whatsoever is required prior to its usage. This allows the method to be
applied in a wide variety of situations without the need for sensitivity
studies that typically are problem-dependent.

Thirdly, the results yielded by the POD are always real-valued fields,
typically with a straightforward physical interpretation.

All these properties accounted for the huge success POD had in appli-
cations.

1.3.2 Dynamic Mode Decomposition

The Dynamic Mode Decomposition (DMD) is a fairly recent spectral de-
composition technique. It was first introduced by Schmid [Sch10] as a
method to extract coherent structures from fluid flows, and later success-
fully applied in separate works, such as Schmid et al. [Sch+11], Kalghatgi
et al. [KA14], and Muld et al. [MEH12].

The introduction of this method could not avoid a comparison with
the already popular POD technique. As we will discuss later, in Chapter 5,
DMD is a computationally cheaper technique than POD, but this comes
with a price, which is that of tunable parameters.

1.4. Graphical Processing Units 5

These parameters are, in general, problem-dependent, and thus DMD
requires a certain a priori knowledge of the solution of the problem at
hand, and this makes it non optimal for use in a first study of a new
phenomenon. Nevertheless, when the main features of the solution are
qualitatively known, as it often happens in fluid dynamics, the technique
can be effectively implemented and saves computational cost. This is
particularly helpful when the procedure is implemented as part of a loop
that has to be run several times, as the computational cost easily adds up.

1.4 Graphical Processing Units

Graphical Processing Units (GPUs) are special kinds of processor that
have been around for a long time, but only recently were employed for
large scale parallel computation.

GPUs belong in the wider class of coprocessors. Inside a computer, a
coprocessor is a piece of hardware separated from the main, traditional
processor that is specialised in doing simple, independent operations as
fast as possible. Loosely speaking, a processor is made of a single process-
ing unit able to perform a wide range of different tasks while guaranteeing
good performance for all of them. A coprocessor, on the contrary, is a
cluster of many processing units that are only good at performing basic
computation, but that can do so all together, in parallel execution.

The reason for this huge design difference between processors and
coprocessors lies in the different aims for which they were developed, the
latter being thought, initially, mainly for computer graphics.

Computer graphics, indeed, is mainly concerned with updating the
pixels of a monitor. The resolution of common monitors is constantly
increasing, with 4k monitors being the new standard prescribing 4096 ×
2160 = 8 847 360 pixels to be updated, in the case of a standard 30 fps
application, 30 times per second. On the other hand, updating the colour
of a pixel requires little effort in general, so it was natural to focus the
development of GPUs towards the best design to address this specific kind
of issue, namely having a lot of relatively slow processing units, all taking
care of a small part of the whole picture.

For this reason, initially coprocessors were only used for computer
graphics, mainly for gaming, and the class of coprocessors only contained
GPUs.

Due to the later crisis in the development of traditional processors,
which reached the limit of affordable clock speed, traditional processors
began to incorporate multiple processing units – or cores – in a single
component, seeking better performance in parallel execution. This lead a
large part of the computer science community to design new algorithms
to better exploit the possibility of executing multiple tasks concurrently.

6 Chapter 1. An extended introduction

Computational scientists, who had the most to earn from an increase
in computing power, fostered the research on this topic, bringing a lot
of attention to the development of massively parallel processors, which
otherwise might have not grown so popular. When even the limit on
the number of cores that can coexist on a single machine† was reached,
hardware designers started to closely tie several independent computers –
or nodes – one to each other, giving to each as many cores as possible, but
this came with additional costs and problems in the binding of different
machines‡.

At some point, the idea was born that the thirst for parallel computing
power computational scientists had could be quenched by a clever usage
of the well known coprocessors that were so spread in computer graphics.
This is when General Programming for GPUs (GPGPU) was born.

The first GPU producer to offer a dedicated tool for GPGPU was
NVidia, with the famous CUDA toolkit. Since it turns out that there
are quite a few fields of science in which typical computational tasks
involve the execution of simple, independent operations, GPUs were a
breakthrough in those fields, achieving immense success in a handful of
notable case studies ranging from bioinformatics to computational chem-
istry, data science, machine learning and medical imaging, just to name
a few.

Coprocessors later tried to gain space in the territory that traditionally
belonged to processors, and the dispute is still open, with no clear win-
ner. What is certain is that coprocessors are now an important part of
scientific computing worldwide, and in fact several other companies devel-
oped coprocessors specifically for scientific computing, most notably Intel’s
Xeon Phi. New development tools were proposed to address the use of
coprocessors in scientific computation, such as OpenCL and OpenACC,
and existing ones were expanded to support this emerging architecture,
such as OpenMP.

1.5 OP2

Code performance is a matter of two components: software and hardware.
As long as the hardware involves single processors, perfectly-written code
can be faster only by running on more performing hardware: little or
no intervention is required on the application source code§. With the
spread of multi-core processors, shared memory and distributed memory
architectures, coprocessors of various kinds, however, improving the per-
formance of an application is now also a matter of writing better code.

†This is called a shared memory architecture.
‡This is called a distributed memory architecture.
§One exception being manual vectorisation, but not for long.

1.5. OP2 7

This can potentially involve a substantial re-writing of the code, depend-
ing on the available hardware; if, later, the application is to be executed
on a significantly different hardware, optimal performance might require
another modification of the source code, and so on.

The process of adapting code to a specific architecture is demanding
and requires a good deal of knowledge that belongs to the computer sci-
ence field. In a scenario in which more and more scientists – biologist,
chemists, mathematicians, physicists and others sharing the fact of not
being computer scientists – approach the world of scientific simulations, it
becomes unlikely, and undesirable, that a general scientist has to master
also a branch of computer science in order to achieve good performance
with his simulations, to him merely a tool.

One attempt to meet the need for a somewhat automated parallel code
generation was made with the Oxford Parallel Library for Unstructured
Solvers (OPlus). Little literature is available on this library as it was
developed for industrial, hence confidential, purposes. Two useful refer-
ences are Burgess et al. [BCG95] and Crumpton et al. [CG95]. OPlus later
evolved into a second version, still developed at the Oxford e-Research
Centre, named OP2. This project is more academic and open source
([GRM]).

The idea behind the two libraries is similar, so we will only describe
OP2 in the following. They move from the assumption that basic entities
in a computer simulation can be described by means of sets and maps
between these sets, and that the most computationally intensive parts of
a simulation involve looping on these sets of objects, computing quantities
related to the single set element in an independent way.

More specifically, two assumptions are made, namely that the order in
which operations are performed does not affect the final result and that
mappings between sets do not change over time.

Actually, a great variety of scientific settings fall in this framework.
Unstructured grids are the main target, where set elements can be cells,
edges or nodes, and the loops represent, for example, flux computations
of explicit timestepping. Other use cases can include n-body simulations,
lattice Boltzmann methods, looping on graphs and many others.

With the above assumption, the application user – i.e. the scientist –
is only required to write a serial application and then to wrap the looping
functions in the code – the kernels – with some functions provided by
OP2. A source-to-source compiler provided by the library is then run that
reads the application code written by the user and generates new source
code, specialised for the required architectures.

A wider literature was produced as the development carried on and
OP2 proved able to tackle industrial applications with a very good scaling,
for example Bertolli et al. [Ber+12] and Mudalige et al. [Mud+12].

A major advantage of OP2 is that most of the burden of recasting a

8 Chapter 1. An extended introduction

given serial code for parallel execution is handled by the library developer,
not by the library user. This implies that, on the paper, a library user, who
has little knowledge of the details of parallel computation, can benefit of
state-of-the art techniques in his code by simply updating the library to
the latest version and recompiling all his software. New architectures can
also be supported as soon as the library supports it, not the particular
code.

Another notable benefit is that using OP2, unlike what happens in the
development process of common parallel codes, one can easily maintain
the serial version, the shared memory version and the coprocessor version
of the code in a single listing, not needing to keep multiple implementa-
tions around. Maintaining several versions of the same application can
make development messy and delay the availability of newly implemented
features, which typically appear in the serial code as the field scientist
advances his research, in the parallel versions.

1.6 Plan of the work

The rest of this thesis is organized as follows.

• In Chapter 2 we briefly recall the fundamental setting for the sim-
ulations we performed, we state the industrial problem we are con-
cerned with and outline the solution methods.

• In Chapter 3 we review OP2, a library developed at Oxford Uni-
versity for efficient parallel computation, and assess its usability to
achieve the goals of this project; this topic has been of considerable
relevance during the internship.

• In Chapter 4 we describe our first results concerned with mesh gen-
eration and simulations with the Reynolds-Averaged Navier-Stokes
and Large Eddy Simulations models.

• In Chapter 5 we thoroughly describe the problem of the identifi-
cation of coherent structures and the spectral analysis approach to
its solution, including the details of the techniques we used. We
then proceed to review the application we developed to perform the
actual computation, describe validation test cases, discuss perfor-
mances and limitations and present the main results of this work.

• Chapter 6 is dedicated to the topic of shape optimization, reporting
the general software framework we developed to perform automated
optimization for the problem at hand; we present promising results.

• In the final chapter we conclude with a summary of the main
achievements of this work and some directions for future research.

Chapter 2

Computational Fluid
Dynamics

CFD is nowadays an essential tool in almost any engineering field, most
notably aerospace, mechanical and civil engineering. In the many years
of its history, Computational Fluid Dynamics made its way to a variety
of other fields such as climate modeling and prediction, ocean modeling,
geology, astrophysics, biology and many others. In many cases a sym-
biotic growth characterized these relationships, with CFD helping in the
solution of physical problems, whose solutions in turn helped us under-
standing more about the complicated nature of fluids.

The benefits of being able to effectively predict the behavior of a phys-
ical system before actually building it cannot be understated. The time,
energy and money expenses needed to design a particular device, struc-
ture, airfoil, engine part, prosthesis, etcetera can be drastically reduced if
the process is driven by a solid simulation framework.

Given its wide range of applicability, CFD naturally branched into
several, more specialised sub-fields, devoted to the study of, for example,
compressible or incompressible flows, single phase or multiple phase flows,
fluid-structure interaction, Newtonian fluids, non-Newtonian fluids, and
so on. Within each of them, field-specific techniques were developed to
take advantage of the additional assumptions and the similarity of the
attacked problems.

2.1 Compressible fluid dynamics

The framework in which we settle for our problem is that of compressible
fluid dynamics.

Here we recall the derivation of the general equations describing fluid
flows, including the flow in an S-duct we are interested into, that is, the
compressible Navier-Stokes equations.

9

10 Chapter 2. Computational Fluid Dynamics

2.1.1 Mass conservation

Given a density field ρ, the mass contained in a volume V at time t is∫
V(t) ρ. By mass conservation, we know that

dt
∫
V(t)

ρ = 0;

by Reynolds transport theorem we can take the time derivative inside the
integral ∫

V(t)
∂tρ+∇·(ρu) dx = 0.

This can be recast to a differential relation because it has to hold valid for
any control volume V(t), thus implying that the integrand must vanish,
or

∂tρ+∇·(ρu) = 0. (2.1)

Equation (2.1) is called the continuity equation and is the first of the
Navier-Stokes equations.

2.1.2 Momentum equation

We start again from continuum mechanics, from which we know the
integral relation for the momentum,

dt
∫
V(t)

ρu =

∫
V(t)

ρf +
∫
∂V(t)

τ · n,

which states that the time variation of the momentum is driven by the
sum of volume forces and contact forces.

The second order tensor τ is the stress tensor for the continuum at
hand. In the case of viscous fluids, it has the form

τ = 2µS(u) + λ trS(u) I− pI,

where I is the identity tensor and p is the pressure.
The differential form of the momentum equation is

∂t(ρu) +∇·(ρu⊗ u− τ) = ρf. (2.2)

Equation (2.2) is the second of the Navier-Stokes equations, and is known
as momentum equation.

2.2. The Rolls-Royce software HYDRA 11

2.1.3 Equations closure

In the case of compressible fluids, these four equations (one for the density
ρ and three for the components of the velocity u) are not enough to
determine the five unknowns u, ρ, p. This problem does not pose in the
incompressible flow case as density cancels out and its equation becomes
one for u, thus leaving us with four equations in the four unknowns u, p.

In the general case, the energy conservation equation and the equation
of state are provided. The former reads, in integral form,

dt
∫
V(t)

ρE+

∫
∂V(t)

q · n =

∫
∂V(t)

τ · n · u+

∫
V(t)

ρf · u+

∫
V(t)

ρr,

where E = e+ 1
2ρ|u|

2 is the total specific energy, e is the internal energy,
q is the specific heat flux, f is the specific volume force, r is the specific
heat production.

The vector q can be expressed as q = −k∇ ϑ if we accept Fourier’s law,
having denoted by ϑ the temperature and by k the thermal conductivity.
Again by Reynolds transport theorem, we have the differential form

∂t(ρE) +∇·(ρEu− τu− k∇ ϑ) = ρ(f · u+ r). (2.3)

The last thing that is needed is the equation of state, which is a
relationship between the thermodynamic quantities. In the case of an
ideal gas, we have

p = (γ− 1)ρe, ϑ =
e

cv
, γ =

cp

cv
.

The equations introduced so far are sufficient to completely describe
the evolution of the system. In the special cases of barotropic flows, for
which a relationship between pressure and density not involving energy is
available, the equation of energy is not needed anymore, and the system
simplifies. One notable such case, which we used for the simulations
throughout this work, is that of isentropic gases, for which we have the
relationship

p

ργ
= const.

For the simulations in the present work, the ideal gas model with the
isentropic flow hypothesis was always assumed, with γ = 1.4.

2.2 The Rolls-Royce software HYDRA

Given the central importance of CFD, many solvers exist, either meant to
be general purpose or specific for a narrow range of applications.

12 Chapter 2. Computational Fluid Dynamics

Rolls-Royce devoted significant effort in the past years to the devel-
opment of an in-house CFD code, named HYDRA. HYDRA is a finite
volume solver specialised in solving the compressible Navier-Sokes equa-
tions.

On the model side, it supports several turbulence models, including
inviscid, laminar, Spalart-Allmaras to k−ε, Mentor’s k−ω SST, k−ω with
EARSM, LES and DES, many of which with a specific version supporting
wall functions as well.

The default solving strategy, and by far the most widely, implemented
in HYDRA, is a parallel multigrid smoothing technique. A lot of freedom
is left to the user, who can specify either a V-cycle or a W-cycle type of
multigrid loop, with an arbitrary number of levels. A characteristic trait
of the solver is that the multigrid algorithm is not purely algebraic, but
the coarser grids are actually built by an edge collapse procedure carried
out by an auxiliary preprocessor.

The management of parallel execution in HYDRA is delegated to the
OPlus library introduced above. In this way, the implementation of CFD
related code is separated by that of computer science related code (i.e.
parallelisation). [BCG95; CG95]. This is the reason why we are interested
in the OP2 library: it is tightly connected to the HYDRA solver which, in
a future release, could be adapted to use this more modern version.

Most of the simulations done throughout the six months of this work
were performed with HYDRA. Occasionally, ANSYS Fluent was used for
preliminary investigations, comparing configurations and for some small,
complementary checks.

2.3 Statement of the problem

The study of aerodynamics, and of aeronautical engineering in general, is
certainly more challenging when tackling bleeding-edge conditions. The
most notable case of extreme condition is aerodynamics is certainly that
of fighter planes.

Since their first appearance in World War II, it became clear that fight-
ers were going to play a decisive role in almost all kinds of conflicts, given
their superior velocity and ability to strike both air and land targets with
high precision and a variety of weapons, including, much later, nuclear
missiles. Also, the development of carriers further increased their strate-
gic importance, making it feasible to operate and refuel fighters without
the need of a physical, fully-featured airport.

For all these reasons, fighters always received great attention, and a
huge share of the technology currently available to the public was initially
developed with military applications in mind, in particular to fighters.

2.3. Statement of the problem 13

Figure 2.1: Lockheed Martin-Boeing F-22 Raptor. The hole under the
cockpit is the intake of an S-duct leading to the engine in the rear part.
The hole and the engine are not aligned, so the duct needs to be S-shaped.

The industrial problem we address in this work is that of the optimal
design of an important component of fighters, known as S-duct.

On a fighter, an S-duct is any of the (typically one or two) ducts that
extend from the front of the plane to the engine intake in the rear part
of the plane. The function of an S-duct is clearly that of taking the air
necessary for the correct functioning of the engine to the engine itself;
see Figure 2.1 for an example.

Design constraints impose that the inlet of an S-duct cannot, in most
cases, be aligned with that of the engine; i.e., the duct cannot be straight
but has to do at least – and typically at most – two bends, hence the name.
This is due to the fact that, in order to preserve the stealth capabilities of
the fighter plane, the engine blades should not be visible from outside the
plane, as would happen with a straight duct.

Unfortunately, the S-shaped design typically induces separation and
recirculation on the first bend of the duct. This has the undesirable con-
sequence of yielding a spatially inhomogeneous pressure outlet, which
coincides with the inlet to the engine. An inhomogeneous pressure inlet
to the engine can reduce stability margins of the propulsion system sig-
nificantly, possibly resulting in reduced fan life and performance. It is
therefore of utmost importance that, together with optimal performance,
stable propulsion be ensured in the whole flight envelope of a jet aircraft.

14 Chapter 2. Computational Fluid Dynamics

The question arises naturally if anything can be done to reduce the effect
of the separation; in other words, if the inhomogeneous outflow condition
can be somehow recovered.

2.4 Methods

To answer the above question, a designer has to act on the S-duct under
examination, the most relevant property of which is its shape. A designer
then starts wondering if any two given shapes are equal, with respect to
the outflow pressure field they generate. Once he is convinced that the
answer is negative, the question poses of how to tell which of two shapes
is better. This takes us to the problem of assessing the quality of a given
outflow.

A main strategy is that of using the so-called distortion indexes. A
distortion index is, basically, a functional of a given flow that aims to
quantify the degree of distortion of a flow field. Distortion indexes have
been extensively and successfully used in the past; for example, an index
called DCϑ was used in the European fighter program Eurofighter [BJ00;
BB10]. This index evaluates the distortion level of an outlet from the
worst ϑ-degrees-wide sector in the outlet, according to

DCϑ =
pt,out − pt,ϑ

q2
,

where pt,out is the mean total pressure at the outlet, pt,ϑ is the mean total
pressure in the worst ϑ-degrees-wide sector and q is the dynamic pressure
at the outlet. In a typical application, ϑ = 60 degrees, at least.

In the present study, as far as distortion indexes are concerned, we
used two, more evolved, distortion indexes, named Circumferential Dis-
tortion Index (CDI) and Radial Distortion Index (RDI). These indexes try
to independently assess the quality of the outflow field in the radial and
circumferential components.

To define the distortion indexes, let us consider a circular outlet sec-
tion. These indexes were introduced for experimental settings, so we will
here define them in that context. Consider a rack of sensors positioned
in the outflow surface along concentric circumferences Ci, as depicted in
Figure 2.2.

To define the CDI, on every circumference Ci we compute a local index

CDIi =
pt,i −minpt,i

pt,out
Fϑi,

where we called pt,i the pressure field defined by sensors on Ci and Fϑi
an empirical weighing factor.

2.4. Methods 15

Figure 2.2: A rake of sensors along concentric circumferences: the solid
line delimits the outflow section, the filled dots represent the sensors.

With the above numbers, we can finally define the CDI as

CDI = max
i

CDIi + CDIi+1
2

. (2.4)

The RDI is calculated by considering the hub radial (inner) and the
tip radial (outer) ring, defining

RDIi = 1− pt,i
pt,out

, i =

{
inner

outer

and later
RDI = max(RDIinner, RDIouter). (2.5)

An alternative to understand how bad the situation is in the separa-
tion zone is doing a spectral analysis. Spectral analysis comprises more
innovative techniques that aim at extracting meaningful information from
an unsteady flow field. In general, a spectral analysis technique tries to
decompose the given space-time flow field into wisely chosen fundamental
components, the most important of which are meant to contain the most
relevant information. We will expand on spectral analysis below.

16 Chapter 2. Computational Fluid Dynamics

Chapter 3

GPUs and OP2

3.1 More details on GPU architectures

We introduced in Section 1.4 that coprocessors, and especially GPUs, grew
popular in scientific computing. We shall now expand on the reason why
they are so successful in some applications of scientific computing, with
relations to the hardware structure of the GPUs.

The main difference between processors and coprocessors is in fact in
their hardware design, and it is sketched in Figure 3.1. A CPU is designed
to be able to perform a number of tasks of different kinds, and in fact
the Arithmetic-Logic Units (ALUs) are important in the design, but not
predominant. GPUs, conversely, dedicate very little space to cache and
control facilities and commit almost all of their hardware to processing
units and the memory to support them. This heavy unbalance in hardware
resources allocation means that GPUs can perform significantly better in
mere computation, while falling behind on other kinds of tasks. This
disadvantage is, however, of little concern as long as coprocessors are
used to perform only the specialized tasks they are designed for.

In order to harvest their potential even further, processing units inside
modern GPUs are arranged in two-dimensional arrays of blocks, each of

Figure 3.1: Sketch of the designs of CPUs and GPUs.

17

18 Chapter 3. GPUs and OP2

which contains two-dimensional arrays of threads. This hierarchy has
several advantages. On one side, it reflects a variety of configurations
which are naturally two-dimensional, such as pixels in an image, entries
in a matrix or cells in a structured 2D mesh; this allows the programmer
to simplify the development by addressing the single threads, which are
appropriately labeled, by their position on the chip, matching virtual and
physical positions, which is of great help.

On the other hand, the knowledge that programmers are going to
exploit the particular arrangement of the threads allows the maker to
design the hardware so that it can take advantage of this information; for
example, in this scenario communications between neighbouring threads
are more frequent than communications between far threads.

3.2 More details on OP2

The OP2 library, which we introduced in Section 1.5, is a notable example
of automatic code parallelisation targeting multiple architectures at once.
Several of its advantages were discussed above, here we desire to give a
more detailed account of the way it works and it can be used, at least
from the user’s perspective. Since the principal application of OP2 is in the
realm of unstructured simulations, most examples will refer to situations
typical of unstructured simulations.

The OP2 library provides an abstraction layer based upon three basic
objects, called sets, maps and datasets.

A set is any finite, ordered collection of objects that have something
in common, similar to the analogous mathematical definition. Notable
examples of sets are mesh nodes, edges, vertexes, but they could just as
well be nodes in a graph.

A map is a relationship between elements of two sets. An interesting
characteristic of these maps is that, unlike what happens with mathemati-
cal maps, they can associate an element of the first set to several elements
of the second set. In other words, they are what in mathematical terms
would be called multi-valued maps, or simply maps between a set and the
power set of another set. Examples of maps include the mapping of a cell
to the neighbouring cells, as well as the mapping of a cell to its edges or
vertexes.

Finally, a dataset is any field defined on a set, such as density,
pressure, or velocity in a cell.

Once the basic terms are defined, the application user is in charge of
identifying what entities in his or her code can be classified as sets, how
they are mapped to each other and what datasets are defined on them.

At the programming level, for the case of a two-dimensional grid, this
is achieved in a way similar to what is shown in Listing 3.1, where we first

3.2. More details on OP2 19

1 int nElems = nCells + nBdryEdges;
2 op_set s_elems = op_decl_set(nElems ,"s_elems");
3 op_set s_cells = op_decl_set(nCells , "s_cells");
4 op_set s_edges = op_decl_set(nBdryEdges , "s_edges");
5 op_set s_vertexes = op_decl_set(nVertexes , "s_vertexes");
6
7 op_map m_ed2vx = op_decl_map(s_edges ,s_vertexes ,
8 2,elem2 ,"m_ed2vx");
9 op_map m_cl2vx = op_decl_map(s_cells ,s_vertexes ,
10 3,elem3 ,"m_cl2vx");
11
12 double* u0 = (double *) malloc(sizeof(double)* nElems);
13 op_dat d_u0 = op_decl_dat(s_elems ,1,"double",u0,"d_u0");

Listing 3.1: Declaration of basic OP2 elements.

1 inline void cellArea(
2 const double* p1,
3 const double* p2,
4 const double* p3,
5 double* area)
6 {
7 *area = 0.5*((p1[0]-p3[0]) * (p2[1]-p1[1])
8 - (p1[0]-p2[0]) * (p3[1]-p1 [1]));
9 if (*area < 0)
10 *area *= -1;
11 }

Listing 3.2: Function to compute the area of a cell from the coordinates
of the points.

declare sets for elements, cells and edges specifying their size and name,
and later define maps between edges (resp. cells) and vertexes, associating
to each edge (resp. cell) two (resp. three) vertexes. The variables elem2
and elem3 are integer arrays containing the indirections of the mappings.
In other words, the array elem2 contains 2*nBdryEdges integers, the first
two indicating the indexes of the elements of s_vertexes to which the
first element of the set of edges is mapped, the second two mapping the
second edge to the corresponding vertexes, and so on.

Sets and maps are fine, but OP2 unleashes its true power in compu-
tation, that is in loops. A common task needed in finite volumes codes
is that of computing the area of a given cell, which is needed in the
time marching scheme. Given a function to compute the area of a cell as
that shown in Listing 3.2, the loop can be written in plain C language as
shown in Listing 3.3.

20 Chapter 3. GPUs and OP2

1 double* mi = (double *) malloc(sizeof(double)* nCells);
2
3 for(int i = 0; i < nCells; i++)
4 {
5 cellArea(double* p1,
6 double* p2 ,
7 double* p3
8 double* mi[i]):
9 }

Listing 3.3: A regular loop to compute the area of a set of cells.

1 double* mi = (double *) malloc(sizeof(double)* nCells);
2 op_dat d_mi = op_decl_dat(s_cells ,1,"double",mi,"d_mi");
3
4 op_par_loop(cellArea ,"cellArea",s_cells ,
5 op_arg_dat(d_coords ,0,m_cl2vx ,3,"double",OP_READ),
6 op_arg_dat(d_coords ,1,m_cl2vx ,3,"double",OP_READ),
7 op_arg_dat(d_coords ,2,m_cl2vx ,3,"double",OP_READ),
8 op_arg_dat(d_mi ,-1,OP_ID ,1,"double",OP_WRITE));

Listing 3.4: An OP2 parallel loop to compute the area of a set of cells.

The OP2 parallel version of this loop is quite close to the original one.
Indeed, the code simply needs to be wrapped like shown in Listing 3.4.
This last listing reads as follows: declare a parallel loop using the kernel
(i.e. function) cellArea, which loops on the set s_cells, and gives a cer-
tain list of arguments to it. The argument parameters op_arg_dat specify
that arguments should be taken from datasets defined to OP2 above in
the code. For the case of the first argument, a detailed explanation of the
meaning is as follows. Pass as an argument to cellArea a value taken
from the dataset d_coords; but the loop is being defined on the set of cells,
s_cells, whereas the dataset d_coords is defined on the set of vertexes,
s_vertexes, thus pass the value from d_coords taken from the zeroth∗ el-
ement the current cell is mapped to by the map m_cl2vx. This argument
consists of three doubles, and is intended to be read and not written by the
function - the latest specification is important for optimisation purposes.

At this point, an important thing to note is that the code, even though
wrapped like this, can still be executed serially, as if it did not include
any OP2 function. In fact, OP2 is completely transparent in the original
source code and functions like op_par_loop simply bind to the regular
loop when the original code is executed. This way, the library user can
continue the development of his scientific code without potentially have

∗Which is the first, as C is a zero-based language.

3.2. More details on OP2 21

1 new execution plan #2 for kernel cellArea
2 number of blocks = 121
3 number of block colors = 1
4 maximum block size = 640
5 average thread colors = 1.00
6 shared memory required = 28.62 KB
7 average data reuse = 1.91
8 data transfer (used) = 4.86 MB
9 data transfer (total) = 7.81 MB
10 SoA/AoS transfer ratio = 1.37

Listing 3.5: OP2 output for the execution plan of a kernel.

to debug a parallel implementation, or propagate new features to it.
When the time comes for the library user to deploy his application on

parallel architectures, another part of OP2 comes into play, that is the
OP2 translator.

The translator is a Python script† that acts as a source-to-source com-
piler, meaning that it reads the serial source code that was wrapped with
the special OP2 functions and generates a set of new source codes ready
to be compiled. In particular, OP2 is able to automatically generate source
code optimised for use with OpenMP, MPI, CUDA, as well as hybrid ar-
chitectures such as OpenMP+MPI and OpenMP+CUDA. All MPI versions
support interfacing to ParMETIS or PT-SCOTCH to efficiently partition
and redistribute the workload among all available nodes [KK98; CP08].

Implementations for other architectures are work in progress and more
or less stable, such as the support for auto-vectorisation of the code, aimed
at exploiting processors’ features like Intel’s SSE or AVX. Once again,
a library user will be able to benefit from these new features without
changing his source code.

The code generated by OP2 is highly optimised, taking advantage of
the field-specific expertise of the developers. What happens behind the
scenes is that OP2 builds separate data structures that are optimised for
the specific target architecture. It later uses a scheduler to plan the exe-
cution of the loop iterations; a sample output can be seen in Listing 3.5.
Although very promising, OP2 has a few flaws and limitations, which we
will briefly describe. The inner core of OP2 works on two assumptions.

The first of these is the hypothesis that the result of parallel loops does
not depend on the order in which the single iterations are executed. This
is often the case, for example when dealing with explicit time-stepping, or
when computing functionals of a solution like its mean, or again when
populating the dataset of the areas of the mesh cells.

†A matlab version is also available.

22 Chapter 3. GPUs and OP2

The second assumption is that mapping indirections are only one level
deep. This means that if a mapping from cells to their neighbours is given,
together with a mapping from cells to their vertices, in looping on the set
of cells it would be possible to access datasets defined on the cells, on
the neighbouring cells or on a cell’s vertexes, but not on the vertexes of
neighbouring cells.

In the writer’s experience, this can become limiting when implementing
a design pattern he came up with, friendly called injection pattern. In a
common application framework, we may define element any mesh entity
on which fields are defined (solution, forcing, coefficients, etcetera).

In finite volumes methods, the set of elements typically includes‡ both
cells and boundary segments, which are useful to impose boundary con-
ditions. This means that the datasets corresponding to the above fields
should be defined on this set of elements. This data setting agrees with
what is done, for example, by ANSYS’s meshing tool ICEM.

When looping on the cells of a mesh, though, one is seldom interested
in looping on both internal and boundary elements together, the former
group usually needed to update the solution, the latter group to update
the boundary conditions. Since the operations to do for each of them are
very different, one possibility would be to loop on all elements and then
use an if statement inside the loop to distinguish if the element is in
internal cell or a boundary edge. This turns out to be extremely inefficient
when parallel scalability is taken into account.

For this reason, it is convenient to define, together with the set of
elements, additional auxiliary sets for cells and boundary edges, and then
declare injections of these auxiliary sets into that of elements, de facto
implementing the mathematical idea of a subset. This enables to easily
loop on the boundary edges or on the internal cells separately, increasing
performance, and allowing to access datasets through the injection into
the set of elements. An example of the implementation of this design
pattern is shown in Listing 3.6, where the definitions of Listing 3.1 are
assumed.

On the other hand, OP2’s limitation makes it now impossible to access
datasets defined, for example, on a neighbour of the element correspond-
ing to a given cell.

Another notable limitation in the use of OP2 is its intrinsic unfitness
to provide linear algebra capabilities. This follows directly from the na-
ture of unstructured computation framework and the fact that recasting
matrix-vector operations in the frame of looping over general sets, al-
though certainly possible, would make the whole overhead of managing
structured objects (matrices and vectors) as if they were unstructured, not
worth anymore. The best solution is to delegate linear algebra needs to

‡In the case of a 2D grid.

3.3. Testing OP2: the Heat application 23

1 int* ed2el = (int*) malloc(sizeof(int)* nBdryEdges);
2 for (int i = 0; i < nBdryEdges; i++)
3 ed2el[i] = i;
4 op_map m_ed2el =
5 op_decl_map(s_edges , s_elems ,1,ed2el ,"m_ed2el");
6
7 int* cl2el = (int*) malloc(sizeof(int)* nCells);
8 for (int i = 0; i < nCells; i++)
9 {
10 cl2el[i] = i + nBdryEdges;
11 }
12 op_map m_cl2el =
13 op_decl_map(s_cells ,s_elems ,1,cl2el ,"m_cl2el");

Listing 3.6: Implementation of the injection design pattern.

a linear algebra backend and to build an interface between OP2 and the
backend library.

Apart from these limitations, which are intrinsic of the design of the
library, OP2 also suffers from a few bugs, mainly due to the fact that the
library is relatively young and development is still ongoing.

Although the library is not fully reliable for production code, the de-
velopers team works continuously on the project and it will soon be. This
motivates our interest in OP2 as the base platform for a possible upcom-
ing release of Rolls-Royce’s HYDRA software. For this reason, part of
the work done in this project involved the assessment of the capabilities
of OP2. On this regard, OP2 was widely tested in the development of a
small, benchmark application, that we named Heat, to which the following
section is devoted.

3.3 Testing OP2: the Heat application

Heat is an OP2 application that solves an evolutionary heat conduction
problem on a unit square, with fully Dirichlet boundary conditions.

Heat utilises many of the functionalities of OP2, and is aimed to serve
as an example application to help software developers gain an understand-
ing of developing applications with OP2. Accordingly, Heat was accepted
as a contributed application in the main OP2 repository.

Heat is meant to solve the following problem
∂tu−∇·(µ∇u) = f in Ω× [0, T]
u(x, t) = g(x, t) on ∂Ω× [0, T]
u(x,0) = u0(x) in Ω× {0}

(3.1)

24 Chapter 3. GPUs and OP2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Final solution

Figure 3.2: The solution produced by the Heat benchmark application for
problem (3.1).

In the present version, Ω = [0, 1]2, u0 = 0, g = y, f = 0, µ = 0.001 and
T = 0.5, but these values can easily be changed in the code. The final
solution is shown in Figure 3.2.

3.3.1 Finite differences version and CPU performance

The first version we developed solves (3.1) with a finite differences spatial
discretization scheme and an explicit Euler time marching scheme on a
structured, Cartesian grid.

The finite differences approximation is a standard second order accu-
rate LeapFrog scheme: if we call ulij the solution at time tl at node (i, j),
then the second order spatial derivative in the x direction becomes

∂xxu(xi, yj, t
l) ≈

uli+1,j − 2ulij + uli−1,j
h2x

.

A similar formula holds for the derivative in the y direction.

3.3. Testing OP2: the Heat application 25

0 2 4 6 8 10 12 14 16
Number of processes

0

2

4

6

8

10

12

14

16

C
om

pu
tin

g
sp

ee
du

p

Strong scalability

Speedup
Linear scalability

Figure 3.3: Shared memory scalability benchmark for OP2 and (3.1).

The application was wrapped with standard OP2 function calls, pro-
cessed through the code generator and then benchmarked. The benchmark
results for this first case are shown in Figure 3.3. In this first benchmark,
an equally spaced grid of size 100 × 100 intervals was used, and CPU
scalability for the shared memory paradigm was tested on an Intel Xeon
CPU E5-2665 @ 2.40GHz.

The results are very good, as they show OP2 is able to scale almost
linearly even on a relatively small grid and with as many as sixteen
processes. The slight degradation of the scalability when the processors
count increases can be motivated by the fact that the processor we used
has exactly sixteen cores, which means that when all of them are being
used the processor’s bandwidth might saturate and cause small delays.

3.3.2 Finite volumes version and GPU performance

In a second benchmark, the GPU performance of OP2 was assessed by
implementing a second version of the Heat application.

26 Chapter 3. GPUs and OP2

The second version features a finite volumes spatial discretization
scheme on a general unstructured grid. This is a more natural frame-
work for OP2, as in the previous example, due to the use of a structured
grid, we did not have to use all the features of OP2.

Concerning the spatial approximation, we implemented a cell centered
scheme, which means that the control volumes of the discretization coin-
cide with the cells of the mesh. Given a mesh on the domain, we then
integrate (3.1) in order to get, for every control volume E∫

E

∂tu−

∫
E

∇·(µ∇u) =
∫
E

f.

Using Stokes theorem now yields∫
E

∂tu−
∑
e∈∂E

∫
e

µ∇u · n =

∫
E

f;

with equation (3.1) in this form, boundary conditions are implemented in
some of the line integrals, in particular those corresponding to the cell
edges that belong to the boundary of the domain.

We can get a discrete scheme from the previous equation by approx-
imating the integrals: a first order approximation gives the semi-discrete
scheme

mi∂tui =

M∑
j=i

mijµi
uj − ui
δij

+mifi (3.2)

where mi, ui and fi are the area, the value of the solution and the forcing
of the i-th cell, mij is the length of the edge separating cells i and j and
δij is the distance between the barycenters of cells i and j; finally, M is
the number of neighbours of a cell, so M = 3 in the case of triangular
meshes.

To complete the discretization, we need to take care of the term ∂tui:
this can be done, upon defining a set of equally spaced discrete times
t1, . . . , tn, by setting, for example, ∂tui =

un+1
i −uni
∆t . This is the usual

Forward Euler method.
Finally, the fully discrete scheme reads

un+1
i = uni + ∆t

 1
mi

 M∑
j=i

mijµi
unj − u

n
i

δij

+ fi

 (3.3)

The size of the time step ∆t has to satisfy some stability condition
depending on the values of the spatial grid step parameter h and the
diffusivity coefficient µ. Typically one has ∆t ≤ Ch

2

µ , where C is some
unknown constant.

3.3. Testing OP2: the Heat application 27

Hardware Release date

Intel Xeon Processor X5650 Q1 2010
NVIDIA Tesla M2070 Q3 2010

Run type Time (s)

OpenMP - 6 threads 3373
OpenMP - 12 threads 1883
CUDA 311

Table 3.1: Scalability of OP2 for the finite volumes GPU benchmark.

In order to be able to run Heat on very fine meshes, so that we can
show OP2’s scalability, we would be forced to have an excessively small ∆t
to keep the Forward Euler scheme stable. To overcome this problem, we
implemented a Runge-Kutta 4th order time marching scheme. This still
does not allow the use of an arbitrary time step, but remarkably relaxes
the constraint (in this scenario, still, ∆t = 10−5 in the final version).

With this final implementation we ran a benchmark to compare CPU
and GPU scalability. We created a mesh of 1 948 676 cells and let Heat
run on a single, multi-core processor with OpenMP and on a single GPU
with CUDA generated code. The results are shown in Table 3.1. The
GPU results are very good: OP2 is able to do six times better on a single
GPU than on twelve threads. A very fine mesh was needed in order to
expose the advantage of using a GPU; because of their architecture, GPUs
and coprocessors in general show their real potential only when a great
deal of parallelism is involved in the operations in progress, so that the
massive amount of cores they have can be effectively exploited.

A general note on the comparison in Table 3.1: comparing GPUs and
CPUs is usually somewhat unfair, as there is no such a thing as a con-
version table that tells what CPU is equal to what GPU and in what
sense. This means that it is in theory possible to obtain arbitrary results
by simply changing the processor or coprocessor at hand.

A way out of this is to consider hardware that is either equally old
or equally expensive. In our case we chose the former criterion as the
CPUs and GPUs we had were released in the same year and finding out
the release prices proved more nontrivial.

A final note on Heat. Because of the significance of the implemented
benchmark, the Heat application was selected as a contributed benchmark
to the OP2 project and will be soon added to the official repository§.

§http://www.oerc.ox.ac.uk/projects/op2.

http://www.oerc.ox.ac.uk/projects/op2

28 Chapter 3. GPUs and OP2

3.4 Final remarks on OP2 and dynamic compila-
tion

The proposed benchmarks show the potential of the OP2 library as a
general tool for automated parallelization of scientific computing applica-
tions. The innovative concept, inherited by its predecessor OPlus, is the
source-to-source compilation process that generates highly optimised code
for a variety of architectures. More importantly, the tool is extensible to
support new architectures and little to no effort is required to the library
user to adapt his or her code to run on yet to come architectures.

The idea of dynamic compilation is also present in other popular soft-
ware packages. For example, the FEniCS project (see [LW12]) offers a
comprehensive programming environment for the solution of PDEs by the
finite element method with both a C++ and a Python interface. In the
former case, a source-to-source compilation tool called ffc is provided to
generate highly optimized code for runtime execution; in the latter case,
a Just-In-Time (JIT) compiler called Instant compiles pieces of Python
code into optimized C++ code at runtime, again separating the scientific
development from the computer science implementation.

The PyFR project (see [WFV14]) is another case of a dynamic com-
pilation approach: this Python software solves fluid dynamics equations
by a Flux-Reconstruction scheme and provides JIT compilation of compu-
tational kernels targeting both CPUs and coprocessors in an automated,
user-hidden fashion.

Chapter 4

RANS and LES

In this chapter we describe the CFD settings for the simulations performed
throughout the work. The problem described is the compressible flow in an
S-duct and the geometry used for the work is the one given in Wellborn
et al. [WRO94]. The duct itself is accordingly called Wellborn.

Wellborn is a diffusive duct, meaning that the outlet area is bigger
than the inlet one, and it fits a bounding box of dimensions, in meters,
(−0.4084, 1.7752)× (−0.125799,0.125799)× (−0.399375,0.102161).

The simulation parameters for the flow are given in Table 4.1. The
Mach number is not excessively high, which means the flow is still not
too far from being incompressible; this accounts for the possibility to use
an incompressible solver to compare the results, whenever needed.

4.1 Mesh assessment and parameters

We know from experiments that the flow we studied exhibits separation.
Nevertheless, this feature might not be present in the simulation output
due to unfitness of the computational mesh used to approximate the flow.

Static pressure (Pa) 101 325.0
Static temperature (K) 288.15
Mean inflow velocity (m s−1) 120
Reynolds number (ca) 4× 106
Mach number 0.27
Mass flow (kg s−1) 1.3065
Turbulence intensity (%) 5.0
Viscosity ratio 10.0

Table 4.1: Parameters for the flow in the Wellborn S-duct. The Reynolds
number is computed based on the hydraulic diameter of the duct.

29

30 Chapter 4. RANS and LES

Figure 4.1: Total pressure for the flow on a mesh that does not properly
capture the separation phenomenon of the flow. Green is 1.01× 105 Pa
and red is 1.07× 105 Pa.

An example of this is shown in Figures 4.1 and 4.2, where the flow
on the initial and final meshes of the study is represented by clipping the
total pressure on a mid-plane and at the outlet. This aspect is of course
of great importance and requires a separate study before one can start
with the CFD simulations.

The simulations needed for this study, thus including those in Fig-
ures 4.1 and 4.2, were performed using Fluent and the RANS k–ω model
we described in Chapter 2. The software we used for the creation of the
mesh is BoxerMESH, from Cambridge Flow Solutions [Cam]. This soft-
ware works by first creating an octree mesh of a given geometry and then
body-fitting it to the boundaries. An octree mesh is a mesh created as
follows: given a region to mesh and a bounding box, this box is subdi-
vided into smaller boxes, arranged in a Cartesian grid; the octree mesh is
then the collection of all the small boxes that are fully contained into the
region to be meshed. Body-fitting is achieved by modifying the external
boxes of the octree mesh so that they adapt to the boundary of the given
shape.

We carried on a preliminary study of the mesh parameters, specifically
as far as the boundary layer is concerned, as it turned out after a few
attempts that this is the most critical feature to capture the separation. In
particular, we found out that the mesh boundary layer, that is the thin
layer of cells extruded from the wall to capture the physical boundary
layer, needs to be thick enough, which means at least 15mm, and it also
has to satisfy the constraint y+ ≈ 5 as we do not want to use wall
functions for the simulations. As a brief recall, y+ is a non-dimensional

4.1. Mesh assessment and parameters 31

Figure 4.2: Total pressure for the flow on a mesh that properly captures
the separation phenomenon of the flow. Green is 1.01× 105 Pa and red is
1.07× 105 Pa.

First layer’s thickness (mm) 0.025
Expansion ratio 1.3
Number of layers 20

Full layer height (mm) 16 ca

Table 4.2: Boundary layer parameters for the accepted mesh.

wall distance and is defined as

y+ =
u∗y

ν
=

√
τw
ρ y

ν
=
µy ∂u

∂y

∣∣∣
y=0

ν
√
ρ

=
√
ρy

∂u

∂y

∣∣∣∣
y=0

,

where u∗ =
√

τw
ρ is the friction velocity and τw = µ ∂u

∂y

∣∣∣
y=0

is the wall
shear stress.

Since the definition of y+ involves the value of u, which is unknown
a priori, the mesh study procedure has to be iterative in the sense that
the flow is solved on an initial mesh, then the y+ is computed and the
boundary layer is refined accordingly.

Of course, refining the boundary layer means producing a bigger mesh
in terms of cell numbers, increasing the computational cost of the whole
simulation: this means we have to find a trade-off between the two. The
final parameters we accepted for the simulation are shown in Table 4.2
and the corresponding y+ is shown in Figure 4.3.

We would like to stress that the y+ alone is not enough to guarantee
the efficacy of the mesh. As we said, the boundary layer has to extend at

32 Chapter 4. RANS and LES

0.5 0.0 0.5 1.0 1.5 2.0
Position (m)

0

1

2

3

4

5

6

7

8

9

W
a
ll
y

+

y+ with effective boundary layer

Figure 4.3: y+ values along the wall for the accepted mesh.

least 15mm into the flow zone, and refining the internal part of the mesh
did not seem to overcome a too short boundary layer. This is probably
related to the way the mesh is built: when the body-fitting is performed,
hexahedra are converted into prisms, breaking the structure of the mesh
and possibly ruining the local numerical accuracy.

4.2 RANS

RANS simulations were used throughout the project to get an initial un-
derstanding of the flow properties as well as to drive the distortion index-
based optimisation procedure.

The chosen model for the simulations was Menter’s SST (Shear-Stress
Transport) k–ω model. It is a fairly robust and reliable model, it proved
efficient to investigate the general properties of the flow in the S-duct,
which is not too complex as compared to other geometries such as a
full turbine, but still exhibits peculiar features. Menter’s SST model was
introduced in Menter [Men94] as a coupling of the k–ω and k–ε models
so that the former is used in the inner region of the boundary layer,
whereas the latter is used in the free shear flow. For completeness, we

4.2. RANS 33

recall the equations of the model in Equation (4.1):

∂t(ρk) +∇·(ρku) =P − β∗ρωk+∇· [(µ+ σkµt)∇k]

∂t(ρω) +∇·(ρωu) = γ
νt
P − βρω2 +∇· [(µ+ σωµt)∇ω]

+ 2(1− F1)
ρσω2
ω
∇k · ∇ω

(4.1)

where we defined

P = τ · ∇u

νt =
ρa1k

max(a1ω,ΩF2)
ϕ = F1ϕ1 + (1− F1)ϕ2 (ϕ = σk, σω, β, γ)

F1 = tanh(arg41)

arg1 = min

[
max

(√
k

β∗ωd
,
500ν
d2ω

)
,
4ρσω2k

CDkωd2

]

CDkω = max
(
2ρσω2

1
ω
∇k · ∇ω, 10−20

)
F2 = tanh(arg22)

arg2 = max

(√
k

β∗ωd
,
500ν
d2ω

)

d is the distance to the nearest wall, Ω =
√
2‖∇u−∇uT2 ‖2 and we close

the equations with

γ1 =
β1
β∗

−
σω1κ

2
√
β∗

γ2 =
β2
β∗

−
σω2κ

2
√
β∗

σk1 = 0.85 σω1 = 0.65 β1 = 0.075
σk2 = 1 σω2 = 0.856 β2 = 0.0828
β∗ = 0.09 a1 = 0.31 κ = 0.41

As far as the boundary conditions are concerned, at the inlet we set a
total temperature of 293.05K, a total pressure of 107 588Pa, k = 1m2/s2
and ω = 5555.5 s−1, which are reportedly common values in engineering
practice; we tell Hydra to treat the wall of the S-duct as a viscous wall,
thus imposing zero velocity; finally, at the outlet we specify the static pres-
sure to be 101 325Pa. These boundary conditions are enough for Fluent of
Hydra to setup the configuration and run the solver. The missing bound-
ary conditions are deduced by the codes from the given ones; since both
are closed-source applications, we could not find out what exactly goes
on behind the scenes. The mesh we used, which is the one we obtained
at the end of the study we described above, has 701 437 hexahedra.

34 Chapter 4. RANS and LES

Figure 4.4: Flow simulation using Menter’s SST k–ω model on the initial
Wellborn shape. The separation zone on the first bend and the inhomo-
geneous outlet are well captured by the simulation.

Figure 4.5: Close up on the separation zone of the Wellborn duct for the
initial configuration. The recirculation zone is clearly visible.

The flow in the given configuration is shown in Figure 4.4 and a close
up on the separation zone, visualized by means of streamlines, is given
in Figure 4.5.

The flow exhibits all the features we are expecting, and even more.
A close look at the upper wall of the second straight part of the S-duct
reveals that a much smaller separation bubble is forming also after the
second bend, which acts as a second backward-facing step. This second
separation bubble is less relevant than the first one, so we will almost
completely ignore it in the following; we will, however, refer to it once at
the end of Chapter 6.

4.3. LES 35

Figure 4.6: LES solution before the flow can complete a first flow-through
in the duct. A residual of the smooth initial condition is still visible in
the right-most part of the duct.

4.3 LES

Large Eddy Simulations were used for the most scientifically interesting
part of the project, namely the spectral analysis.

The scheme used in Hydra is a Kinetic Energy Preserving (KEP) con-
servative scheme introduced in Jameson [Jam08] and Eastwood et al.
[Eas+09].

In Jameson [Jam08], in particular, it is shown that in order to obtain
a KEP scheme it is sufficient that, for any two control volumes o and p,
the convective term satisfies

(ρuiuj)op =
1
2
(ρui)op(u

j
p + u

j
o), (4.2)

and accordingly sets (ρui)op = ρui and (ρuiuj)op = ρuiuj where the bar
sign denotes arithmetic averaging between the control volumes.

For the Large Eddy Simulations we used the same boundary condi-
tions that we used for the RANS simulations; of course k and ω are
not present anymore. For the LES we used the same mesh as for the
RANS simulations. This is mainly because we know that the RANS mesh
can correctly capture the boundary layer; we also verified, after running
it, that the simulation on this mesh yields reasonable results. As Large
Eddy Simulations are unsteady, an initial condition is also needed; we
used the steady solution in Figure 4.4 as an initial condition for our LES
of the flow in Wellborn. In any case, a certain number of initial time
steps needs to be discarded as it is still affected by the initial condition,
as shown in Figure 4.6. For the case of our simulation, with a time step
of 2.5× 10−5 s, about 800 time steps are needed to allow the fluid initially
at the inlet to flow through the duct and reach the outlet; this is called a
flow-through. The initialised flow is shown in Figure 4.7.

36 Chapter 4. RANS and LES

Figure 4.7: A snapshot of the flow after the first flow-through. The solu-
tion got rid of the initial condition and is now fully turbulent.

Chapter 5

Post-processing tools and
techniques

In this chapter we proceed to the description of our new methodology for
real-time post-processing. First, a deeper review of the mathematics be-
hind POD and DMD is given, together with a comparison of the two with
each other and with existing methods. After introducing the techniques,
a validation test case is presented to show that the implementation is
working. We later give details on the code we implemented, highlighting
its structure and giving details of the most important parts, and present
a brief analysis of its performance and scalability. Finally, we discuss
issues and improvements in the implementation.

5.1 The identification of coherent structures

The problem of the identification of coherent structures in a turbulent
flow has attracted a lot of attention in the literature in the past years
[Hol+12]. Giving a good definition of a coherent structure is trickier than
it looks; we follow Chong et al. [CPC90] and define a vortex core as a
region of space where the vorticity is sufficiently strong to cause the rate-
of-strain tensor to be dominated by the rotation tensor. This definition
allows the use of criteria based on invariants of the velocity-gradient
tensor, thus being Galilean invariant. The term coherent structure then
includes vortical structures and shear layers. The main reason for the
interest in coherent structures is that, when they were first observed, they
appeared as a viable alternative to the mere – and frustrating – exclusively
statistical study of turbulence, which was considered, up to that point, as
a purely uncorrelated phenomenon [Fie88].

Many post-processing techniques were since developed and a fairly
comprehensive survey is presented in von Terzi et al. [vTSF09]. One of
the most popular, that is to some extent related to POD and DMD, is the

37

38 Chapter 5. Post-processing tools and techniques

so-called Q-criterion, named after the letter used for the quantity

Q =
1
2
(P2 + ‖W‖22 − ‖S‖

2
2), (5.1)

where we have set P = −∇·u, W = ∇u−∇uT

2 , S = ∇u+∇uT

2 .
The quantity Q is the second invariant of the gradient of the velocity

u, and its value is associated to the vorticity of the flow and consequently
used for vortex core identification.

The Q-criterion allows to identify coherent structures in a flow by
looking at the contours (iso-surfaces) of Q: if confined zones of higher Q
are present, then they will appear as contours in the post-processing.

The limit in these approaches is that they take the flow as is, without
any kind of advanced processing technique apart from the direct com-
putation of quantities of interest. In other words, these methods simply
proceed to the computation of some quantity which is useful for a visual
representation and investigation of the features of the flow field. In the
following, we will show how this limit can be surpassed.

5.2 Detailed description of POD and DMD

5.2.1 POD

Let u(x, t) be the flow velocity computed by an unsteady CFD simula-
tion on a domain with m cells and at n different time steps. The main
idea behind spectral analysis is that of looking at the flow function as
the superposition of several modes, each containing a part of the total
information. In our case, we assume that the expansion can be done in
a separated-variables fashion as

u(x, t) =
∞∑
i=0
ai(t)ϕ

i(x). (5.2)

It is clear that there are infinitely many pairs of coefficients ai and
basis functions ϕi that can do this, so it is legitimate to ask how to
choose one.

It would be useful it the ϕi were orthogonal, as this would make it
easy to compute the coefficients ai. Since in practice one can only add a
finite number of components to approximate a function, we would like to
guarantee that if we only sum M factors, then we get the best possible
approximation, in the least squares sense, with M factors. When both
these conditions are satisfied, then (5.2) is the POD of function u.

The mathematical method behind the Proper Orthogonal Decomposi-
tion is the Singular Value Decomposition (SVD). Suppose we record data
from a simulation in m grid cells at n different time steps: we can then

5.2. Detailed description of POD and DMD 39

arrange this data in a matrix A ∈ Rm×n. The SVD of matrix A is a
decomposition of the form

A = UΣVH =

u1 . . . um

︸ ︷︷ ︸

∈Rm×m

σ1
. . .

σp
0

. . .

︸ ︷︷ ︸

∈Rm×n

v1 . . . vn

H
︸ ︷︷ ︸

∈Rn×n

(5.3)

where the H superscript denotes Hermitian transposition.
The decomposition is the product of three matrices: a unitary matrix U

of m vectors of length m, a rectangular diagonal matrix of ordered entries
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 = 0 = . . . and a unitary matrix V of n vectors
of length n. The vectors ui are called the left singular vectors, vectors vi
are called the right singular vectors and values σi are called the singular
values. Once the decomposition is completed, one can reconstruct the
initial data as

u(x, t) =
∑
i

σiui ⊗ vi, (5.4)

that is, as a sum of rank-1 tensors, accordingly with the fact that they
have to be basis vectors of a space-time vector space.

It should not take long to convince oneself that the vectors ui are
the counterpart of the functions ϕi in (5.2) and the vectors vi are the
counterpart of coefficients ai in (5.2). Thus, vectors ui contain the spatial
information of the decomposition, whereas vectors vi contain the tempo-
ral information. The singular values σi act as weighing factors, telling
how important each component is in the whole decomposition. A weigh-
ing factor must be present as both the ui and vi have unitary norm, as
matrices U and V are required to be unitary.

The SVD has some very interesting properties that contributed to its
popularity in the literature. First of all, the decomposition always exists
even for general rectangular matrices. This is a form of robustness of
the method, which guarantees to yield a solution whatever the initial
conditions are. Secondly, the SVD of a real matrix always produces real
matrices U,Σ and V . This accounts for a direct interpretation of the
results in the familiar field of real numbers.

For completeness, we shall now describe how to compute the SVD
of a given matrix A. We will present only one of the possible methods,
which is known as the cross method for the computation of the SVD of
a matrix.

40 Chapter 5. Post-processing tools and techniques

By equation (5.3), we have that

A = AHA = (UΣVH)H(UΣVH) = VΣ2VH,

where we have used the facts that UHU = I, since U is a unitary matrix,
and ΣHΣ = Σ2 since Σ is diagonal. Right-multiplying by V we have

AV = Σ2V

or, if we take row i,
Avi = σ2ivi.

This means that row vectors vi are the right eigenvectors of A with
associated eigenvalues σ2i . We note that A is hermitian symmetric as
(AHA)H = AH(AH)H = AHA and thus, by the Spectral theorem, is di-
agonalizable with real positive eigenvalues σ2i , so that the values σi are
actually real positive numbers.

Once the vi are known through the solution of the eigenvalue problem,
right-multiplying (5.3) by V gives

AV = UΣ

or, reading column i,
1
σi
Avi = ui,

which defines the ui and completes the decomposition.
It should be noted that, in principle, an equivalent derivation can be

carried on using AH = AAH and resorting to an eigenvalue problem for
ui.

Although theoretically equivalent, on the computational side one of
the two approaches might be preferable. Using A yields an eigenvalue
problem on a matrix of size n×n, whereas using AH yields an eigenvalue
problem on a matrix of size m×m, thus the criterion is the shape of A. If
m = n, there is no difference in the computational cost, whereas if m 6= n
using A is cheaper if m > n and using AH is cheaper otherwise.

In our setting, we always have m� n, as mesh sizes can range up to
tens of millions, whereas the number of time steps hardly exceeds a few
thousands.

This has important implications on implementation choices in the de-
velopment of the code, as described later.

Now that the math is set, a few words on the physical meaning of the
POD. The most important notion is the relationship between the singular
values and the kinetic energy of the flow. Although it is not always
legitimate to associate singular values and energy contents, fluid dynamics
is a lucky exception [Cha00].

5.2. Detailed description of POD and DMD 41

This relationship allows for an important interpretation of the results
given by POD in terms of energy content of the flow being simulated: one
can now tell how important each mode is in comparison with the others.

This feature of POD, although important, still requires that the orthog-
onal modes have a physical meaning in the picture of the simulated flow.
This turns out to be true and, as reported for instance in von Terzi et al.
[vTSF09], the orthogonal modes computed by the POD represent the co-
herent structures of the flow. This fundamental fact lets us now interpret
the whole process of Proper Orthogonal Decomposition as a means to not
only separate the various coherent structures composing a flow, but also
to weigh them with their energy content. This feature gives techniques
based on spectral analysis, such as the POD, an edge over previously ex-
isting methods such as the Q-criterion, which is able to identify coherent
structures in general, but not to tell the energetic content they have.

An interesting property of POD is that not all the singular values are
needed to analyse experimental data, but only the most important ones.
This perfectly matches the fact that numerical techniques for eigenvalue
computation rely on iterative procedures which more easily approximate
eigenvalues of bigger magnitude.

5.2.2 DMD

The Dynamic Mode Decomposition has a slightly different approach from
the POD.

Let again u(x, t) be a simulated flow field and let us arrange the data
from m cells at n−1 time steps as columns in a matrix Un−1

1 , and similarly
build Un2 .

The core assumption of DMD takes place now: we assume that there
is a linear mapping A such that

AUn−1
1 = A

u1 . . . un−1

 =

u2 . . . un

 . (5.5)

This assumption is extremely interesting: on one side, we know that
in general this cannot happen unless m = n− 1 and the ui are linearly in-
dependent; on the other side, this assumption can be seen to be somewhat
reasonable in the special case of turbulent fluid flows.

The idea behind this is that the evolution of a fluid flow not only is
not completely random, but also lies in a subspace of Rm of dimension
n− 1.

Turbulent flows like the one we are concerned with in this work often
exhibit a sort of periodic behavior, for example in the velocity oscillations
at a separation interface. The DMD is meant to be applied to this kind of
phenomena.

42 Chapter 5. Post-processing tools and techniques

If the assumption is justified, then matrix A rules the evolution of the
flow, at least from time steps 1, . . . , n − 1 to n, and its eigenvalues and
eigenvectors contain the precious information about the flow field that we
are looking for. This is the claim of DMD, that coherent structures of
the flow can be identified by studying the eigenvalues and eigenvectors of
matrix A.

The first problem to solve now is how to find A. A clever solution to
the problem is found by a simple algebraic manipulation. From equation
(5.5), exploiting the structure of Un−1

1 and Un2 , we can write

Un2 =

u2 . . . un

 =

u1 . . . un−1

0 c1
1 0 c2

.
1 0 cn−2

1 cn−1

 = Un−1
1 S.

(5.6)
Equation (5.6) defines the companion matrix S, whose action is to

translate the first n − 2 columns of Un−1
1 to the left, removing the first

one, and to add the last one as a linear combination of the previous ones.
In fact, considering the equations by columns, the last one reads

un =

n−1∑
i=1
ciui = c1u1 + c2u2 + · · ·+ cn−1un−1

This equation defines the coefficients ci of matrix S.
The eigenproblem on A has thus been recast into an eigenproblem on

S, a much easier matrix to compute.
For the reasons mentioned above, the ci are not guaranteed to exist in

the general case. What we would do, to perform the actual computation,
is to solve a least squares problem with the last column-equation of (5.6),
namely u1 . . . un−1

c1
c2
...

cn−2
cn−1

 =

un

 , (5.7)

which means that the linear approximation now reads

un =

n−1∑
i=1
ciui = c1u1 + c2u2 + · · ·+ cn−1un−1 + r

where r is the residual of the least squares solution of (5.7). Incidentally,
one can consider the norm of r as an a posteriori measurement of the

5.3. The need for a linear algebra back-end 43

fitness of the hypothesis for the particular case at hand, i.e. if the residual
norm is zero, then the hypothesis is fully legitimate, whereas if it is big
then the hypothesis is not really justified.

Once the ci are known, the eigenvalues σi and eigenvectors ψi of
S can be computed. The last step in the decomposition is to compute
the dynamic modes Φi = Un−1

0 ψi; additionally, the eigenvalues can be
transformed into a physically more significant form by λi = ln(σi)

∆t , which
separates in the real and imaginary parts of λi the modulus and phase of
σi [Sch10].

This representation allows to tell at a glance which eigenvalues are
unstable, which are stable and how fast they grow or decay, together with
the oscillatory frequency of the associated eigenvectors.

This property suggests the physical interpretation of the DMD: it is
a procedure that extracts dynamic modes – which turn out to identify
coherent structures – by frequency. Instead of expanding the given data
as a combination of space-time basis functions, DMD yields spatial-only
fields, together with a modulus and an oscillation frequency.

If we order the λi by descending eigenvalue modulus, we find that
the first eigenvalue is real, and so is its associated eigenvector, which
represents the mean flow.

As with POD, DMD also gets along with numerical techniques as the
most important modes are the ones associated to the eigenvalues with
bigger modulus.

5.3 The need for a linear algebra back-end

Both POD and DMD involve linear algebra computations, thus we need
a linear algebra back-end. OP2 is not fit for this kind of operations, so
we need to look for something else.

Since we want to be able to target a variety of parallel architectures
at once, we must carefully choose the library to interface with. Two
main alternatives are available: a recent, interesting project is Matrix
Algebra on GPU and Multicore Architectures (MAGMA), whereas a more
classic choice is the Portable, Extensible Toolkit for Scientific computation
(PETSc), coupled with the closely related Scalable Library for Eigenvalue
Problem Computations (SLEPc).

MAGMA is a project run by the Innovative Computing laboratory at
The University of Tennessee [BCP97]. Its purpose is to provide a dense
linear algebra library that can run efficiently on a vast combination of
heterogeneous architectures. The focal point of the development team is
the ability to fully exploit all the available hardware at the same time.
That is, if both CPUs and GPUs are available, then MAGMA aims to
share the workload across all the hardware in order to fully exploit it,

44 Chapter 5. Post-processing tools and techniques

101 102 103 104

Matrix size

100

101

102

103

104

S
o
lu

ti
o
n
 t

im
e
 (

s)

Eigenvalue problem

Figure 5.1: Performance of eigenvalue problem solution with MAGMA at
various matrix sizes.

instead of performing computations exclusively on the CPUs or on the
GPUs.

MAGMA provides a very similar API to the one provided by the fa-
mous LAPACK package. In particular, the whole parallelization layer is
user-transparent, which makes it easy to use to users who are only fa-
miliar with LAPACK. On top of that, a higher-level API is provided to
perform more elaborate operations such as solving eigenvalue problems.

As part of the preliminary study for the software development phase,
we tested the scalability performance of MAGMA on a computer node
with two NVIDIA Tesla M2070 and twelve Intel Xeon CPU X5650. The
scalability result is shown in Figure 5.1. The performance is good as long
as the matrix order is below a thousand. Past that limit, the burden of
managing a dense matrix storage becomes predominant and the execution
time grows exponentially.

Since the purpose of the piece of software we want to develop is to
implement POD and DMD procedures, meaning the matrix order for the
eigenvalue problem is the number of time steps being considered, this
could not be terribly bad in principle, as we anticipated that we wish to
keep the number of time steps to be computed limited. In practice, though,
one cannot exclude the possibility that more complicated flow cases re-

5.4. Detailed description of Spectre 45

quire more time steps to be successfully analyzed. Also, the eigenvalue
problem of DMD is very sparse, so using a dense storage is a clear waste
of resources. Finally, at the time of writing MAGMA lacks support for
distributed memory parallelism, which limits its usage to single nodes.
For these reasons, we opted for PETSc+SLEPc as our linear algebra back-
end of choice.

PETSc is a famous linear algebra package that supports distributed
memory parallelization, with good scaling up to thousands of cores. It is
notably written in C, but with an object-oriented paradigm; it is mainly
meant to handle sparse matrices, but provides little support for dense
matrices as well. Since a few years PETSc added support for GPU com-
putation by adding subclasses for matrices and vectors that perform com-
putation with either CUDA through CUSP or OpenCL through ViennaCL
[MSK10].

SLEPc is a generalized eigenvalue problem solver library written on
top of PETSc, meaning that it provides additional higher-level tools im-
plemented using PETSc and exposes a very similar API to the end user.
Thus, SLEPc inherits all the benefits PETSc already has. For these rea-
sons, we decided to base our code on PETSc+SLEPc for the linear algebra
computation. This will later pose the problem of converting data from a
format intelligible to Hydra into one that is understandable by PETSc.

We do not present a scalability benchmark for PETSc+SLEPc at this
point, as this is deferred to a later section. What we stress here is that
PETSc allows to use different matrix types in different parts of the same
application without any additional implementation cost. This makes it
very easy to experiment with both dense and sparse matrices, as well as
running on CPU or GPU harware.

5.4 Detailed description of Spectre

In this section we describe the code that we developed for the project,
called Spectre.

We recall that the aim of the projects is twofold: on one side we want
to implement POD and DMD techniques for spectral analysis of unsteady
flows, whereas on the other side we also need to provide capabilities to
compute distortion indexes. Despite the dual scope, the higher importance
of the spectral analysis part accounts for the given name.

A first constraint to take into account is that, due to security reasons,
we were not given access to the Hydra source code during the project
period, so this first implementation will need to read Hydra data files
from the hard disk, this operating mode is called offline as data production
and data analysis happen in two separate, although possibly time parallel,
stages.

46 Chapter 5. Post-processing tools and techniques

AppsMesh Reader Data Structure

Distortion Indexes Spectral

Spectre

Data from Hydra

Figure 5.2: A schematic representation of the code.

Spectre also needs to be able to interface to different data formats in
a modular way, so that the user can read Hydra output and pass it to
PETSc without effort.

The whole code should also be well designed, as it is not meant for a
single use case, but rather to be incorporated into production code in the
near future. This will turn it into an online analysis tool, where simula-
tion and post-processing happen in a single stage of the same application.

To meet these needs, we decided to write Spectre in C++. We would
like to point out that this does not pose compatibility problems with HY-
DRA, which is written in FORTRAN and C, because C and C++ libraries
can be linked together with little effort: all that is required is to expose a
C API to the C++ library, that is a collection of function wrappers.

Before going into the details of the code, a schematic representation
of the code structure is presented in Figure 5.2.

According to the above description, Spectre features a central names-
pace, dataStructure, that holds classes to represent various dataset types.
These classes interface with classes in a meshReader namespace that han-
dle data read from HYDRA files and perform various operations on them.
Once the data is read into appropriate datasets, two processing modules
provide capabilities to elaborate the data: distortionIdx and spectral.
We will now give a brief description of the code structure, highlighting
the main features and strengths of the code.

5.4.1 Mesh reader module

This module is concerned with the reading of mesh data stored in HY-
DRA files. The main class in this namespace is the Domain class. The
Domain class only takes care of storing the geometrical informations about

5.4. Detailed description of Spectre 47

the domain, that is the mesh cells coordinates, boundary conditions and
similar data. A critical capability we want to have in Spectre is the
ability to consider only a part of the mesh, say only a box region or the
inlet boundary. This is useful for several reasons: on one side, spectral
analysis can be performed only in some regions of interest of the whole
simulation domain, saving a good deal of computational time; on the
other hand, one might also want to keep track of quantities such as the
pressure drop from inlet to outlet, thus needing to compute quantities
on the boundary. Cell coordinates in the Domain class are stored in an
std::vector<std::array<double,3>> coords object whose i-th element
holds the coordinates of the i-th cell, so we need to somehow be able
to filter, or mask, this vector to expose only the elements corresponding
to the cells we want to consider at a given time; we will call these cells
active. This masking should also be transparent to the user, who is al-
ways supposed to access data from a domain with the same function, and
yield a small computational overhead. The way we decided to implement
this masking is to add a data member std::vector<size_t> range that
stores the list of indexes of the active cells. A boolean flag will now keep
track of the status of the domain instance: we call restricted a domain
whose active cells are not all the mesh cells. Accordingly, the size of the
domain, which is an integer indicating the number of cells in the mesh,
will now be either the number of total cells or the number of active cells,
depending on the value of the flag variable. Implementing suitable access
methods, a class user can now simply loop over the mesh elements, driven
by the domain size as specified above, and access either the whole domain
or a subset with the same programming interface.

All the geometrical operations on the domain are now handled inter-
nally by the range object. Suitable methods are provided to modify this
vector, the most important ones are collected in a set of classes specifically
designed for geometric operations. The fundamental class for geometric
operations is the Region class. This is an abstract interface that provides
only a method virtual bool inside (double,double,double) = 0 that
tells if a given cell, whose coordinates are passed as parameters, is inside
or outside the region. Implementing several types of restriction opera-
tions is now simply a matter of inheriting from this abstract class and
reimplementing the inside method so that it reflects the particular region
being described by the child class. Implemented examples of subclasses
of Region are Box, that describes a three-dimensional box region, and
HalfSpace, that allows the user to cut the mesh with a plane of equation
ax+ by+ cz+ d = 0, given the parameters a, b, c, d.

Another great advantage of the way this feature is implemented is
that it easily allows to join two regions, to cut a region with another or
to take the whole domain but a given region. All these operations require
simple manipulation of the range vector and are a reimplementation of

48 Chapter 5. Post-processing tools and techniques

the well know set operations union, difference and complementation. It
is clear how powerful this approach is: with only a handful of operations
the user has great control over mesh partitioning.

It should be pointed out that, when running in parallel, this kind of
partitioning does not require to redistribute data over the computational
nodes. This is because data is also time-dependent and thus parallel
distribution of data can be effectively achieved by distributing time steps.
Because of the nature of the implemented spectral analysis techniques
described above, this is the most natural way to distribute data in parallel
also because each time step corresponds to a single row or column in the
matrix operations involved, so this approach carries very little overhead
to the parallel linear algebra back-end.

5.4.2 Dataset module

Once the mesh information has been read into a Domain instance, the user
can read the flow field information. These two steps are split into two
separate operations to reflect HYDRA’s output strategy: HYDRA creates
one file for the mesh information and another file for the field data. These
latter always include density, velocity and static pressure, and include k,
ε, ω or other quantities depending on the particular turbulence model used
for the simulation. Because of this feature, the class needs to be able to
handle a variable number of fields, not necessarily known at compile time.

The same class is used to handle both input and output of both steady
and unsteady datasets. A number of convenience member functions are
defined to access the field variables or to compute derived quantities, for
example the total pressure. All the methods that access data or mesh
coordinates are implemented as wrappers to the underlying Domain object,
that provides much of the functionality.

A critical feature of this class is the ability to push and pop time steps
dynamically. This is needed in order for the post-processing technique to
follow the CFD simulation step-by-step and to update the spectral analysis
at each time step.

5.4.3 Distortion indexes and spectral analysis

We introduced distortion indexes in Section 2.4 and we will need them
in Chapter 6 for shape optimisation.

When dealing with the computation of these indexes, the capabilities
of Spectre to consider the individual boundaries of the mesh become
very useful. Recalling Equations (2.4) and (2.5), it is clear how restricting
the mesh and intersecting restrictions makes the computation a very easy
task. In fact, the actual implementation of the functions that yield the

5.5. Validation of POD and DMD 49

values of the distortion indexes are simply a clever combination of the
methods provided by the other modules of Spectre.

This shows once again that our effective code design saved us a good
share of effort later on.

Concerning the spectral analysis module, two main classes are defined,
Pod and Dmd. They naturally represent the technique with the same name
and have a similar design. Their main task is to interface data from a
Dataset object to PETSc and SLEPc matrices. In particular, these classes
take care of assembling the local portions of the matrices used in the
spectral analysis computation and call the appropriate routines to perform
the actual matrix operations.

Methods are also provided to output the principal values (resp. dynamic
eigenvalues) and to save the orthogonal modes (resp. dynamic modes) to
disk in HYDRA format.

5.5 Validation of POD and DMD

Before going into the spectral decomposition of the S-duct, we present
test cases for POD and DMD routines that we used to validate Spectre.
The test cases are also useful as they give insight into what to expect and
how to interpret the results. As we will see, this is not always trivial.

5.5.1 POD validation

The best way to show the behavior of the Proper Orthogonal Decompo-
sition is to show the dependence of the result on the type of input data
it gets. The POD tries to describe the given data in the best way (in the
least-squares sense) by projecting on rank-1 subspaces. Consequently, it
will yield a better approximation if the input data’s information content
is, in a sense, structured. If there is an underlying pattern, or correla-
tion, in the given data then the POD technique will identify it in the first
modes, which will have a higher associated singular value. If, however,
the input data is random (uncorrelated), then no pattern will be found and
all the modes will have a similar singular value, thus carrying a similar
contribution to the field reconstruction.

Let us study an example. First of all, we consider a set of uncorre-
lated, two dimensional data sampled from a uniform random distribution.
We take 200 samples for the x coordinate and 100 samples for the t co-
ordinate. We recall that there is no distinction between time and space
in POD, because this technique does not take into account the nature of
the dimensions.

Performing the POD on this data gives the results shown in Figure 5.3.
As we can see, the input data does not have any particular structure; ac-

50 Chapter 5. Post-processing tools and techniques

0 20 40 60 80
0

50

100

150

x

Data

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0 20 40 60 80
0

50

100

150

x

Mode 1

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0 20 40 60 80
t

0

50

100

150

x

Mode 1+2

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0 20 40 60 80
t

0

50

100

150

x

Mode 1+2+3

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

Figure 5.3: POD decomposition of uncorrelated data: f ∼ U .

5.5. Validation of POD and DMD 51

σ

6.933 879
6.609005
6.597 251
6.556410
6.319 744

Table 5.1: Values of some singular values for the POD of uncorrelated
data.

σ

56.463 529
12.495 285
0.036 736
0.036 507
0.035 672

Table 5.2: Values of some singular values for the POD of structured data.

cordingly, the POD procedure is unable to find any underlying pattern or
trend, and the resulting modes are all equally important, in the sense that
their value is similar to each other’s; the values for this validation case
are presented in Table 5.1. Because of this, the reconstruction with one
mode is not really representative of the input data, and the reconstruction
with three modes is not decidedly better than that with one or two modes.
In fact, in this example many orthogonal modes are required to get to a
satisfactory approximation of the input data.

Let us see what happens when the input data has a structure: in
this second test case we consider a generic function f(x, t) = g(x)h(t).
Performing a POD on this input data yields a drastically different result
(Figure 5.4).

Now the first mode is already a qualitatively good description of the
given data, and the second mode adds the missing details. Adding more
modes does not appreciably contribute to the reconstruction of the input
data. Accordingly, the singular values associated with the modes are all
but equal, as shown in Table 5.2 What happened here is that the POD
technique was able to identify an underlying data structure and expressed
it as the first mode.

A convenient feature of the POD technique is that the modes it outputs
are real fields with a clear interpretation, even in the so-called eye-norm,
meaning that the result can be visually inspected to have an idea of its
quality. This is important in view of an online post-processing setting in

52 Chapter 5. Post-processing tools and techniques

0 10 20 30 40
0

10

20

30

40

x

Data

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

0 10 20 30 40
0

10

20

30

40

x

Mode 1

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

0 10 20 30 40
t

0

10

20

30

40

x

Mode 1+2

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

0 10 20 30 40
t

0

10

20

30

40

x

Mode 1+2+3

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

Figure 5.4: POD decomposition of structured data: f(x, t) = g(x)h(t)

5.5. Validation of POD and DMD 53

λ

0.001721
−0.001996± 50.062431i
−0.405412± 79.099868i
−1.774495± 43.043489i
−1.908716± 86.493690i

Table 5.3: Eigenvalues for the DMD test case.

which the scientist running the simulation can look at the simulation –
or some quantities derived from it – in real time.

From this example we see what we hope to achieve by applying this
decomposition technique to the flow field variables for the simulation of
the flow in the S-duct, namely the identification of coherent structures as
orthogonal modes, which we might later use in various ways.

5.5.2 DMD validation

As we stated above, the DMD technique identifies dominant modes by
their frequency, its idea being to express the given field as a superposition
of oscillating fields, each with its own amplitude and frequency, which
are given by the associated eigenvalue.

To test Spectre on the Dynamic Mode Decomposition, we chose again
a two dimensional, space-time sample data input. This time space and
time do matter and are not interchangeable.

We sample from the function

u(y, t) = y2 + y cos(50t) + cos(80t) + U(−0.005,0.005), (5.8)

Which is the sum of a parabola, and two oscillating parts with angular
frequencies of 50 and 80. To make things more challenging, we add
a small perturbation in the form of a uniform distribution over the y
domain.

Performing a DMD on the sampled data yields the results shown in
Figure 5.5, with eigenvalues shown in Table 5.3.

First of all, we note that the zeroth mode in Figure 5.5 has zero
imaginary part. This is always the case because the zeroth mode represents
the mean flow, and in the figure it is, accordingly, a parabola.

What is important here is that the DMD procedure correctly identified
the frequencies in the input data in the first two modes (cfr. the matching
colors in (5.8) and Table 5.3). We know that those are the frequencies we
have to look at because they correspond to the eigenvalues with greater

54 Chapter 5. Post-processing tools and techniques

0.0 0.2 0.4 0.6 0.8 1.0
2

0

2

4

6

8

10

12
Mode 0

Real part

Imaginary part

0.0 0.2 0.4 0.6 0.8 1.0
y

8

7

6

5

4

3

2

1

0
Mode 1

Real part

Imaginary part

Figure 5.5: DMD modes from structured data.

5.6. Performance and scalability analysis 55

(less negative) real part. Since modes decay as ∼ eλt, we see that the
first two eigenvalues are associated to more important modes, which we
know are the ones in the generating function. The other ones are simply
a result of the noise in the generating function and the numerical error,
but they are clearly identified by their lower real part.

We also note that the first eigenvalue is slightly positive. Strictly
speaking, this should not happen as the associated mode is unstable. It
is known that this can happen due to numerical approximation error, but
the effect does not compromise the procedure as long as the eigenvalue is
small and the time interval is bounded.

5.6 Performance and scalability analysis

In this section we spend a few words on the measured performance and
scalability of Spectre. First of all, the setting: Spectre is supposed to
run as a parallel code on distributed memory clusters, possibly exploiting
coprocessors when available. Keeping this in mind, we tested both strong
and weak scalability on both CPU and GPU. The timing was taken for the
computationally intensive parts of the execution only, that is the execution
of a spectral decomposition. We correctly ignore input/output operations
when calculating scalability, also because when Spectre will run online
there will be little to no disk access.

We briefly recall the definitions of strong and weak scalability of
a code. Strong scalability is the ability to scale the execution time of a
problem of a fixed size as the inverse of the number of processors involved
in the computation. This ability is measured by the ratio of the execution
time on n processors to the one on a single processor for a given problem.
A code that scales strongly runs on n processors taking approximately 1

n

times the time it takes to run on one processor. Weak scalability is the
ability to maintain a constant execution time as the problem size scales
like the number of processors involved in the computation. This ability is
measured by the inverse ratio of the execution time on one processor to
the one on n processors for a problem n times as big.

For the benchmark we are going to present, we performed a POD on a
sample matrix of size 50000×100 as a base case, rescaling it appropriately
for the weak scalability test.

Due to the lack of hardware, we only had access to four GPUs dur-
ing the testing, so we present results for scalability up to four computing
nodes. The point of this is that we are more interested in a compari-
son between scalability on CPUs and on GPUs, rather than in a generic
scalability test for CPUs, because Spectre mainly relies on PETSc, whose
scalability properties for CPUs are well known and discussed in countless
works in the literature.

56 Chapter 5. Post-processing tools and techniques

0 1 2 3 4 5
0

1

2

3

4

5
CPU strong scalability

Speedup

Linear scalability

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0
CPU weak scalability

Execution time

Linear scalability

0 1 2 3 4 5
Number of processes

0

1

2

3

4

5
GPU strong scalability

Speedup

Linear scalability

0 1 2 3 4 5
Number of processes

0.0

0.5

1.0

1.5

2.0
GPU weak scalability

Execution time

Linear scalability

Figure 5.6: Strong and weak scalability results for the implemented code
on benchmark cases.

The results of the scalability tests are shown in Figure 5.6. We can
see that the scalability performance is very similar in the two cases. This
is very important because, when using GPUs, an additional bottleneck
appears in the pipeline, namely the CPU-GPU bus memory bandwidth.
The fact that the scalabilities are very similar tells us the good news that
said bottleneck is not negatively affecting the performance of the code.
The benefits of using coprocessors are visible in the actual execution time
of the individual simulations, with computations on GPUs being, for the
present benchmark case, about 40-45% faster than the CPU counterpart.

5.7 Issues and improvements

Although all the tests we ran were satisfactory, we do not fear to admit
that there is still room for improvement. One major issue is the fact that
the matrices handled in the computation, although dense matrices, are

5.8. Spectral analysis results 57

used and memorized as sparse matrices. This defect is due to the lack,
at the moment of writing, of support in PETSc/SLEPc for parallel dense
matrices.

Quantitative tests with a single core showed, however, great perfor-
mance benefits when running with dense matrices, yielding a 40-60%
time gain when compared to a single core with sparse matrices. A good
feature of PETSc is that switching between dense and sparse matrix for-
mat is just a matter of changing a single line of code, and can even be
done at runtime, without the need to recompile the code. This means that
if a later version of PETSc provides better support for dense matrices on
CPUs and GPUs, then little to no code modification will be required and
Spectre will be able to exploit its full potential.

5.8 Spectral analysis results

For the spectral analysis of the LES flow in the S-duct we considered a
fully developed turbulent flow. First of all, we let the simulation run for
enough time for the air to travel from the inflow section to the outflow
section, that is, completing a flow-through of the duct. This was necessary
in order to get rid of the initial condition of the flow, which was the RANS
solution of the same problem.

We run 2500 time steps of the simulation, discarding the initial 800
ones because of the reason just explained, and then performed a spectral
decomposition on 200 time steps, from time step 1400 to time step 1600.

For comparison reasons, before presenting the results of the spectral
decomposition we want to show flow visualization and investigation by
means of more traditional techniques. We recall that we are most con-
cerned with the identification of flow features and shape optimization, so
we will focus on applications to these topics. In particular, in the simple
flow we are dealing with the main feature to identify is the separation
bubble; separation itself provides the link with shape optimization, as in-
troduced in Section 2.4 and discussed in more detail in Chapter 6. Plus,
since the most interesting part of the flow is the one on the first bend, we
restricted the spectral analysis to a portion of the S-duct comprising the
bend, but not the straight parts.

First off, the most basic visualization technique is the plot of contours
of the velocity; an example of this can be seen in Figure 5.7. The velocity
contours hint at the fact that there is a separation on the bend, but we
are able to deduce it simply because we already know the separation is
there; moreover, this plot does not identify vortex cores. This is a well
known result, as vortex cores are not tied to the velocity magnitude, but
rather to the vorticity.

For this reason a better criterion, used in a number of works in the

58 Chapter 5. Post-processing tools and techniques

Figure 5.7: Velocity contours for the LES flow in the S-duct. Little
information can be deduced from this plot, which suggests the presence
of a separation to the trained eye alone.

Figure 5.8: Identification of coherent structures in the S-duct with the
Q-criterion. Vortex cores are easily identified by the contours, but no
information is available on possible features of the flow field such as the
separation bubble we are interested into.

literature, is the Q-criterion introduced in (5.1). We show a plot of the
coherent structures identified by this technique in Figure 5.8. The Q-
criterion is able to identify vortex cores and turbulent structures in the
given flow. This ability is commonly exploited in many papers, and in
fact the Q-criterion is, by now, standard practice. We shall now discuss
how spectral analysis can improve on this.

First of all, let us consider the first POD mode of the velocity magni-
tude, shown in Figure 5.9 The first POD mode is often said to represent
the mean flow. This is intuitively correct, but to be more precise we
should say that its time average is the mean flow, because of course it
cannot be both the mean flow and time-dependent. This issue is trivially
solved, however, by recalling that all POD modes are rank-1 fields, which
means that the flow fields at any two times t1 and t2 are multiples of

5.8. Spectral analysis results 59

Figure 5.9: First POD mode of the velocity magnitude. The iso-surfaces
are neatly organized in layers that reveal the presence of the separation
bubble on the first bend.

each other, thus the time average is again a multiple of the POD mode
at any fixed time interval. We can therefore conclude that the flow field
portrayed in Figure 5.9 is a multiple of the mean flow. In particular, this
means that we have recovered all the information we could have gotten
from a RANS simulation, which yields the mean flow, in the first POD
mode.

Let us now take a closer look at it: unlike in Figure 5.7, the iso-
surfaces are neatly stratified, and this is a clear sign that the first mode
is indeed identifying the separation bubble that characterizes the turbulent
flow in the S-duct. Since separation is the main feature of this flow field,
it is correct that we found it in the first POD mode, as it clearly contains
most of the field energy.

The fact that POD does not give us the mean flow directly, but rather
a time-dependent field, has an important consequence: it allows us to see
how the separation bubble grows or reduces as time passes. Recalling
the reconstruction formula (5.4), we can of course express the flow at a
given time as the superposition of the modes; the first POD mode is thus
telling us that the flow field is given by the superposition of the separation
bubble plus further contribution given by the other modes. The fact that
the decomposition is orthogonal guarantees that the other modes do not
influence the characteristics of the separation bubble as expressed in the
first mode.

We would like to point out how neither the velocity contours (Fig-
ure 5.7) nor the Q-criterion (Figure 5.8) are able to identify so clearly the
structure of the bubble and, even more importantly, its size.

The size of the separation bubble is indeed a very useful piece of in-
formation in view of the original problem we are concerned with, shape
optimization. In the preliminary analysis we carried out in Chapter 4 we
clearly identified (see Figures 4.2, 4.4 and 4.5) separation as the main

60 Chapter 5. Post-processing tools and techniques

Figure 5.10: First and second POD modes. No more global flow features
are present, so the POD falls back on identifying the local vortex cores,
similarly to what the Q-criterion does.

cause of the inhomogeneities in the flow at the outflow surface. Accord-
ingly, we might be tempted to conclude that reducing the size of the sepa-
ration bubble would result in reducing the inhomogeneity at the outflow.
This hypothesis is not rigorously motivated by theoretical arguments, but
we deem it reasonable. If we accept this hypothesis, then it is clear how
convenient it is to be able to measure the size of the separation bubble
in the first POD mode: we could indeed use this number as a cost func-
tional to drive the shape optimization procedure. The time-dependency
of the modes allows us to fine-tune this cost functional even more: we
could in fact decide to minimize the time-averaged size of the bubble or
its maximum size, just to name a couple.

We shall now consider the second POD mode. Figure 5.10 shows a
superposition of the first two POD modes of the velocity magnitude. As
we were expecting, the second POD mode does not identify a particular
flow pattern, but instead only the vortex cores. This is due to the fact that
the flow at hand presents only one macroscopic (global) feature, namely
the separation, and then the following modes fall back on identifying
small, local features such as the vortex cores.

This behavior is similar to that of the Q-criterion shown in Figure 5.8.
An important difference is that the Q-criterion does not distinguish be-
tween more and less energetic vortex cores, but simply gathers them all
together. Another important remark is that if the Q-criterion is applied
to the instantaneous flow field, then the vortex cores it identifies can ap-
pear and disappear with time; conversely with POD, since the modes are
rank-1 fields, the vortex cores undergo, at most, a scaling, but their shape
and structure remain otherwise unchanged.

An interesting feature of the identified vortex cores is that they are
clustered in the lower part of the bend, which is where the separation
bubble is. We claim that this is not a coincidence, but rather that the

5.8. Spectral analysis results 61

recirculation due to the separation bubble is reflected in the presence of
these structures, identified by the second POD mode. This property allows
us to define another possible cost functional for the shape optimization
using the volume of these vortex cores: minimizing the total volume of
the vortex cores would reduce the turbulence in the separation, and this
might help making the outflow field more homogeneous. Furthermore,
reducing the vortex cores would also positively affect the pressure loss,
which is another important factor in the design of a good S-duct.

POD modes beyond the second one look similar to it, and in fact they
identify more vortex cores based on their energy content; accordingly, they
may be included in the definition of a cost functional aimed at reducing
the vorticity content of the flow field.

Another possible use of spectral analysis is in the definition of a
stopping criterion for unsteady flows. One problem with unsteady flows
is in fact in understanding when the simulation is converged. Since
many configurations do not have stable steady solutions, the simulation
eventually reproduces an unsteady, typically periodic, behavior, so the
notion of convergence is to be intended in a statistical sense. The idea
is then to monitor the values of the singular values yielded by POD (or
the eigenvalues given by DMD) and claim that the simulation is fully
converged when a certain number of these values are time-converged.
This approach was tried for POD, see Ahmed et al. [AB04], who found
it successful with the clause that the correct number of snapshots has to
be chosen, taking into account some features of the flow to be simulated
such as its main frequencies.

The definition of a stopping criterion based on the singular values
(or the eigenvalues) poses the new question of how many values should
be considered. The answer comes again from the physical meaning of
the modes, as described above. Once it is understood that individual
modes represent individual features, one can decide that the simulation
is converged when some, or all, of the macroscopic flow features are
converged. In our case, we could decide that a satisfactory approximation
of the separation bubble is sufficient for the simulation to be considered
converged; in case we are using the second mode as a cost functional,
we might want to ask that the second mode is converged as well. In the
case of POD, a second option is to consider the value of the singular
values: since they are proportional to the energy content associated with
the mode, it is possible to estimate how much energy of the flow is being
approximated and choose the modes to track accordingly∗.

All the above remarks are not exclusively related to POD: DMD shares
a good deal of properties and most of what we said applies to this tech-
nique as well. It should be noted that, as described in Subsection 5.2.2,

∗The total energy can be estimated knowing that the singular values are decreasing.

62 Chapter 5. Post-processing tools and techniques

Figure 5.11: Real part of the first DMD mode of the velocity magnitude.
Stratification of the contours identifies the separation bubble.

this technique is less trivial to setup, so the quality of the results can
depend on procedure parameters such as the number of snapshots, and
in general on some a priori knowledge of the flow to be simulated; we
present the best visualizations we were able to get, tuning the DMD pa-
rameters basing on experience. Let us consider the first real mode of the
velocity magnitude given by the DMD decomposition, which is shown, up
to a scaling factor we do not really care about, in Figure 5.11 (recall that
the imaginary part of the first mode is identically zero). Again, we can
see that the iso-surfaces form some layers that identify the separation
bubble, so the Dynamic Mode Decomposition is also able to extract the
main feature of the flow.

Higher order modes are again very similar to each other, according
to the fact that no other macroscopic structures are featured by the flow.
As an example, we show the real part of the third DMD mode, which we
present in Figure 5.12. Similarly to the second POD mode in Figure 5.10,
the third DMD mode shows concentration of vortex cores in the lower
part of the bend, which is in fact where the velocity of the simulated flow
field is lower. Again, we can give the same interpretation as in the case
of POD modes and use these vortex cores to define a cost functional for
our shape optimization problem.

For the case of the flow in the S-duct, we can therefore conclude that
spectral analysis proved a very powerful tool able to identify both the most
important global flow feature and the secondary, local vortex cores. Proper
Orthogonal Decomposition and Dynamic Mode Decomposition yield, to
some extent, comparable results, in some sense validating each other.

5.8. Spectral analysis results 63

Figure 5.12: Real part of the third DMD mode of the velocity magnitude.
Vortex cores in the separation bubble identify the most turbulent part of
the flow.

64 Chapter 5. Post-processing tools and techniques

Chapter 6

Optimization

6.1 Shape optimization

Let us now turn to optimization part of this work. In particular, we
want to solve a shape optimization problem in which we seek an optimal
shape for the S-duct such that the flow field at the outflow interface is as
uniform as possible, for the reasons we discussed above.

For a shape optimization procedure we need some ingredients. One
main ingredient is the PDE F(u) = 0 describing the phenomenon at hand;
later, a base configuration is needed as a starting point for the procedure.
The search domain is equally important: this is a set Uad of admissible
shapes where we look for an optimal solution to the shape optimization
problem. A cost functional J(u(Ω)) is the driving function that allows to
tell when a solution is better than another. Finally, we need an algorithm
that actually makes the choice of the next candidate shape Ω at each
iteration of the procedure.

Some of these ingredients are easy to deal with. For the PDE, we resort
to the standard compressible Navier-Stokes model, modeling turbulence
with Menter’s k–ω SST RANS scheme. For the base configuration; we
will be using the wellborn S-duct that we mentioned above.

Concerning the cost functional, for this test case we will use the
distortion indexes RDI and CDI defined in Section 2.4, together with the
pressure loss from inlet to outlet. Alternative possible choices of the cost
functional will be discussed later.

The definition of Uad is definitely less trivial. Ideally, we want to
give enough room for changes to have a big enough set Uad in which
to search, at the same time without introducing too many parameters,
because the computational cost is proportional to the dimension of the
parameter space to be explored. In doing this, we must keep in mind
the geometrical constraint that it must not be possible to see the outflow
surface from the inflow one, to safeguard the stealth capabilities of the

65

66 Chapter 6. Optimization

plane. We will properly address this issue in Section 6.2.
The algorithm that performs the choice of the candidate is another

tricky point. Since we recast the shape optimization procedure as a mul-
tivariate real optimization problem, we can exploit the huge literature
available on the topic. We will discuss the optimization approach in
Section 6.3.

6.2 Free-Form Deformation

Here we deal with the problem of the definition of the set of admissible
shapes Uad. We said we want to have the shapes controlled by a set of real
parameters, so we want to be able to deform the S-duct parametrically,
while keeping it a valid S-duct shape.

A tool that lets us tackle this problem is a technique called Free-
Form Deformation, or FFD for short. Free-Form Deformation originates
a computer graphics technique and was first described in Sederberg et al.
[SP86].

The idea behind FFD is to enclose the geometric object to deform
inside a cube, or another hull solid, and to deform this latter shape. As a
result, the enclosed shape deforms accordingly. FFD can be used with any
solid modeling system, for example Computational Solid Geometry, and
it can deform surface primitives of any type or degree. The deformation
can be local or global; in the case of local deformation, it is possible to
enforce continuity of derivatives up to an arbitrary degree.

The tool by which we implement Free-Form Deformation is again
BoxerMESH. BoxerMESH allows to import CAD files in various formats
and to manipulate them in various ways, including of course Free-Form
Deformation, before meshing them and exporting the mesh. Moreover,
BoxerMESH is fully scriptable in Lua, and this provides the level of au-
tomation we will need to integrate it in an optimization loop.

Let us now describe the FFD setting for the S-duct. The Free-Form
Deformation algorithm requires one or more convex solids to enclose the
shape that should be deformed. A three-dimensional array of cubes works
just fine, and we call it a lattice.

For the deformation of the S-duct, we defined the lattice shown in
Figure 6.1. This is a simple lattice of 4 × 3 × 3 cubes that surrounds the
curved part of the S-duct. In other words, we leave the straight parts
unchanged and only influence the curved part of the duct.

Next, we have to choose the degrees of freedom of our FFD, that is
we have to define what transformations of the lattice are admissible. For
this test case, we decided to enforce continuity of the duct wall (this
is obvious) but not of the first derivative of the shape. In other words,
sharp edges can form where the straight parts connect to the curved one;

6.2. Free-Form Deformation 67

Figure 6.1: The lattice defined to apply Free-Form Deformation on the
S-duct.

Figure 6.2: Example transformation of the FFD lattice. Here the second
x-normal plane is scaled.

we decide not to worry about this because more regular shapes are still
admissible and we believe the optimization procedure will recover them
in case they are optimal.

Speaking of the actual transformations, we allow the internal nodes
of the second, third and fourth x-normal planes∗ to scale with respect to
their plane’s center and, later, to translate in the xz plane. In particular,
we enforce the plane symmetry of the duct with respect to the xz plane.
We show an example of one such transformation in Figure 6.2.

The total number of degrees of freedom results to be twelve, accounting
for six scaling parameters (the planes can have different scale factors
in the y and z directions) and six translation parameters (each plane
translates in x and z independently).

As far as the transformation ranges are concerned, all scaling param-
eters are allowed to vary in [0.1, 3], whereas translations are admissible
if in the range [−200, 200], where the unit of measure for translations

∗Recall that the flow is in the x direction.

68 Chapter 6. Optimization

is millimeters. As a result, we have now recast the shape optimization
problem as an optimization problem in [0.1, 3]6 × [−200, 200]6 ⊂ R12.

We would like to point out that all these parameters are independent
of the procedure, and all the design decisions we made are arbitrary. For
example, we could have chosen a finer lattice or different transformations
with different bounds, and everything would have been the same, just
more complex. For the purpose of our work, that is intended to be a
proof of concept of the feasibility of the technique, we decided to limit
the complexity to a manageable one. As we will see later on, the results
are still satisfactory for the given test case.

6.3 Smart Optimisation For Turbomachinery

As anticipated, our shape optimization problem is actually a multivariate
real optimization problem. For this kind of problems many techniques
are known and the literature is very vast. Popular families of techniques
include gradient (steepest descent) methods as well as genetic algorithms.

All these methods are well understood and their application is straight-
forward. It is therefore natural to expect to find them already implemented
in some application.

In Rolls-Royce, a good deal of effort is put in the development of a
nice piece of software called Smart Optimisation For Turbomachinery, or
SOFT for short. SOFT is an abstract interface to a general optimization
solver in Rn that allows for a general specification of an optimization
problem.

The way it works is as follows. A configuration wizard takes the
user through the problem specification, allowing him or her to define
the number of objectives (cost functionals) that should be optimized, the
parameters that span the parameter space, their domain of definition and
range of admissible values, the simulation to be run and the optimization
algorithm.

What is remarkable about this setup is the abstraction level allowed
by the software. The simulation to be run can be any arbitrary collection
of scripts, allowing for great generality of the problems that can be solved.
Similarly, the cost functional is implemented as a list of numbers read
from some user-defined text files, regardless of the way they are computed;
this means that very different cost functionals can be used so long as they
output their value to some text file that SOFT can read afterwards.

The optimization algorithm can be changed without touching the rest
of the configuration: from quasi-Newton to genetic algorithms it is just a
matter of changing a setting in a dialog. This high level abstraction layer
allows for easy testing of several different optimization strategies.

We used SOFT for the optimization of the shape of the wellborn S-

6.4. Design of Experiments 69

duct, but there is still a missing piece to the puzzle: the parameter space
has an unknown shape.

6.4 Design of Experiments

The shape of the parameter space is another problem that shall be taken
care of. Let us try to state the problem itself in a more precise framework.

We have a phenomenon, in our case the distorted outflow field, and
some parameters that we are able to tune to try to influence it, in our case
these are the twelve FFD parameters. How can we assess the influence
of each parameter on the phenomenon? Perhaps the phenomenon is very
sensitive to some of them, perhaps some others are completely irrelevant.

In a trivial setting, if we had a phenomenon determined by the toss of
a coin and the roll of a dice, then we could easily explore the whole set
of possibilities, comprising 2 × 6 = 12 possible configurations. If we had
a hundred dice, then the total number of configurations would be 6100,
and if instead of a dice we had a parameter that can take values in a
continuous range, then the same naive formula does not even make sense
anymore.

Clearly, we need a clever way to identify the influence of a parameter
on the outcome of an experiment. This is the problem of assessing the
shape of the parameter space in our shape optimization procedure.

Even if we exclude the case of continuous ranges of values by appro-
priate quantization of the ranges, having p parameters, the i-th of which
can take ni values, still results in

p∏
i=0
ni = very big

possible configurations.
It is clear that this combinatorial approach is the only one that can

give full information on the influence of the single parameters on the
outcome of the experiment, but luckily several methods are known in the
literature, under the theory of sensitivity analysis, to greatly reduce the
computational cost by sacrificing little information. Notable examples of
such methods include the Latin hypercube method or the LP−τ method
[Sal+04].

All these methods are sampling methods: they try to answer the ques-
tion of how to choose a limited set of parameter values in order to extract
as much information as possible on the sensitivity of the target experiment
on the single parameters.

The technique we adopted for our study case is called Design of Ex-
periments, and was first introduced in the 1926 paper, republished in 1992

70 Chapter 6. Optimization

FFD parameters

Post-processor
POD, DMD RDI, CDI

SOFT
DoE Opt

Boxer
FFD

Hydra

RANS LES

Functional

evaluation

Figure 6.3: A representation of the cycle that we implemented to perform
the shape optimization process.

in Fisher [Fis92], and later expanded in the 1935 book Fisher [Fis35].
Although it was originally intended for applications in agriculture, the
theory was later successfully applied to a much wider variety of cases.

A strong feature of the Design of Experiments approach is that it is
able to explore a parameter space choosing the optimal n tuples of values
of the parameters. In other words, Design of Experiments is able to choose
the best n configurations, where n is a user defined parameters, to shape
the unknown parameter space. This feature has a very strong implication:
since n is typically the number of experiments we are able to perform,
Design of Experiments allows us to fix a priori the computational effort
we can afford for the whole shape optimization procedure and obtain the
best result with that fixed cost. Not only this: as the choice of the n
tuple is optimal, the optimal n+ 1 tuple is the optimal n tuple plus a new
entry, the (n + 1)-th one. This means that if we later decide that the
computed result is not accurate enough we can still increase the number
of experiments without having to re-run the previous simulations. This is
a very powerful feature of Design of Experiments that allows for a fine
tuning of the required computational cost and, equally important, to setup
an iterative procedure.

6.5 Summary of the optimization procedure

Now that all the pieces are in place, we can give a final picture of the op-
timization procedure. We will focus specifically on a practical description,
describing the algorithm step-by-step. The optimization cycle is sketched
in Figure 6.3; let us start from the top left corner.

The problem is defined within SOFT, meaning that the optimization
parameters are identified, their range is specified and the application is

6.5. Summary of the optimization procedure 71

told where to read the cost functional from. Later on, SOFT, which
implements Design of Experiments, generates a list of n tuples containing
the values of the optimization parameters, which in our case are the Free-
Form Deformation parameters, to be used in n independent experiments
in order to explore the parameter space.

With the aid of a little bit of Python scripting, the output file produced
by SOFT is parsed and a folder tree is generated to accommodate n
folders, each one for a separate simulation; in each of them, a different
Lua script is generated, containing the FFD parameters BoxerMESH will
use. BoxerMESH is then run with each of these parameter sets, generating
the corresponding mesh.

Pre-processing tools are run on these meshes, which are prepared to
be eventually fed to Hydra, the CFD software we used. Hydra runs n
independent simulations and writes its own output files, which are later
read by Spectre.

Spectre reads in the flow files and computes the quantities designed
to be used as cost functionals by SOFT. For example, we could have Hydra
run RANS simulations and Spectre compute the distortion indexes and
the pressure loss, or we could have Hydra simulate an LES and Spectre

compute some more sophisticated cost functional based on spectral de-
composition.

After the functional evaluation is completed, it is SOFT’s turn once
again. This time SOFT reads in the values associated with the n tu-
ples it generated earlier and uses them to build an approximation of the
parameter space in the form of a hyper-surface. SOFT supports various
kinds of reconstruction techniques, including linear and cubic polynomial
interpolation.

At this point, SOFT runs one of its several built-in optimization tech-
niques and finds the optimum of the approximated hyper-surface. It is
important to point out that in this part of the optimization procedure no
CFD simulation is run, accounting for a very low computational cost.

The optimal values for the FFD parameters are then written to disk by
SOFT, they are passed to BoxerMESH, an optimal geometry is generated
and Hydra is run on it. Running Spectre on the resulting flow field
finally gives a functional evaluation of the optimized solution, allowing
to assess the actual improvement over the starting configuration.

As a stopping criterion, either the absolute figure of the optimized cost
functional or its increment relatively to the basic configuration can be
used. In case the improvement is satisfactory, the loop can exit, otherwise
the user can choose a second number of experiments m > n and start over
with more points to evaluate in the Design of Experiments. Again, in this
case only m−n more CFD simulations have to be run, and the previously
run simulations are not lost, but rather recycled.

Another interesting point of this procedure is that the n runs of Box-

72 Chapter 6. Optimization

Figure 6.4: Total pressure for the flow in one of the configurations given
by SOFT. Green is 1.01× 105 Pa and red is 1.07× 105 Pa.

erMESH and Hydra, for the meshing and CFD simulation, respectively,
are completely independent; In jargon, that part of the loop is said to be
embarrassingly parallel, meaning that it can be run on a number of cores,
expecting the total run time to scale linearly. To be precise, this property
holds up to n parallel processing units, that is when each core takes care
of exactly one meshing or CFD run. Beyond this limit, parallelization is
still possible, but it will have to rely on the internals of the mesher and
the solver, respectively. Concerning BoxerMESH and Hydra, they both
show good scalability performance with at least a few cores per task.

The convenient structure of the optimization loop allows to push this
limit much farther than it usually would be when running in a classic
parallel fashion.

6.6 Shape optimization results

Here we show the results of the shape optimization procedure, discussing
the figures and commenting on possible improvements.

We performed a single complete iteration of the optimization loop, in
order to prove its feasibility and set the ball running for future work.
For the Design of Experiments part we chose to perform n = 48 RANS
simulations in order to explore the parameter space. We then set up
SOFT and obtained the 48 parameter tuples, meshed with BoxerMESH
and simulated with Hydra. As an example, we show the flow in one
of these configurations in Figure 6.4. This particular shape shows that
sharp edges are allowed and used by Design of Experiments. Even though

6.6. Shape optimization results 73

Initial value Optimized value Improvement (%)

ploss 0.068 23 0.013 98 79.5
RDI 0.177 25 −0.010 84 93.9
CDI 1.075 15 1.018 71 5.2

Table 6.1: Summary of the results of the first iteration of the optimization
cycle.

counter-intuitive configurations might be explored by the algorithm, this
should not give rise to any concern on the efficacy of the procedure, as
it is simply DoE exploring the parameter space. If a configuration proves
unfruitful, then the optimization algorithm will look in regions far from
it, in the parameters space, for the optimal shape.

A note on the post-processing is in oder here: from the definition
of the CDI, the RDI and the pressure loss it is clear that the optimal
value for all of them is zero. Although it is not reasonable to expect that
the pressure loss be negative, we cannot say the same for the distortion
indexes, as their definition does not prevent them to be negative, nor
there is a physical reason why they should not be. To prevent SOFT
from searching the most negative values for the distortion indexes, we
setup the post-processing code to output the square of the computed cost
functionals. This clearly does not influence the final result, as now zero
is still the optimal value for all of them, and furthermore is the global
minimum of the cost functionals.

Concerning the second part, once the 48 basic configurations are sim-
ulated and post-processed, we used a technique from the family of Adap-
tive Range Multi-Objective Genetic Algorithms (ARMOGA) for the op-
timization in R12. Genetic algorithms are known to work well in high
dimensional spaces, and ARMOGAs have been used successfully in aero-
dynamic design in the past, for example in Obayashi et al. [OS04]. In our
test case we used the ARMOGA implementation in SOFT, with default
parameters for simplicity. Only one thing is to be mentioned here: having
three cost functionals, one might ask if they all weigh the same or some
are more important than others. SOFT allows to specify different weigh-
ing for the various cost functionals to be optimized, but we chose to keep
them all with the same weight. The reason for this is that any educated
guess of unequal weighing factors should be motivated by a dedicated
study on the effects of the singular factors on the engine performance
and life, which we of course could not perform.

We show the results of the optimization procedure in Table 6.1 The
results are overall very promising. Both the pressure loss and the RDI
were drastically reduced. The CDI was not so positively affected by the

74 Chapter 6. Optimization

optimization procedure, and this is probably due to the fact that the chosen
parameters are not able to effectively influence it. On the optimized RDI,
we note that it is negative, but this is not an issue at all.

As far as the optimal shape is concerned, we regret Rolls-Royce de-
clared it classified, so we cannot show it here. We can, however, give a
qualitative description: the most interesting trait of the optimal shape is
its enlarged mid-section – similar to the example one given in Figure 6.2
– meaning that the third x-plane underwent a significant scaling. To be
more precise, the optimized S-duct’s section starts enlarging on the first
bend, reaching its maximum area at around half of the duct’s total length,
to later restrict and match the section of the outflow part.

Another visible modification to the original shape is that the mid-
length section is translated towards the outflow (positive x direction) and
slightly upwards (positive z direction). This implies that the curvature on
the first bend is reduced, while the one on the second bend is increased.

Sharper edges than in the base configuration are also visible, indicat-
ing that smoothness of the duct shape is not a critical parameter for the
cost functionals we have used.

We recall that the optimization procedure we described above treats
the evaluation of the cost functional as a black-box, simply looking at the
generated number without taking into account the meaning of the input
or the output. This means that the transformation of the base shape into
the optimal shape has, a priori, no physical meaning to the optimization
algorithm. It is nevertheless interesting to try to give, a posteriori, a
physical explanation of what happened.

The fact that the optimal duct’s section varies so appreciably in its
area implies that the flow is slowed down on the first bend and then
accelerated on the second one. The change in the curvature also reveals
that the first bend is now less abrupt than in the original shape, while
the opposite holds for the second bend. Both these modifications seem to
indicate that the optimal shape tries to help the fluid pass the first bend in
the easiest possible way, to the detriment of what happens on the second
one.

This behavior seems to confirm the claim we made in Section 5.8
that inhomogeneities at the outlet are caused by the separation bubble.
In fact, we know from the classic backward-facing step benchmark that
slower flows generate smaller recirculation eddies, so the growth of the
duct’s section, that slows down the flow, and the reduced curvature, that
makes the bend less abrupt, might implicitly be an attempt to reduce the
size of the separation bubble.

In a wider interpretation, we can deem this trend of favoring the first
bend over the second one as an attempt to balance the dimensions, and
thus the importance, of the main separation bubble and the second, little
one that we named at the end of Section 4.2

6.6. Shape optimization results 75

All in all, the results we obtained are quite good. We set up a fully-
featured optimization procedure to perform shape optimization of an S-
duct, based on a real geometry from an industrially relevant study case.
We thoroughly analyzed the implemented recipe, highlighting its strengths
and discussing key features. Finally, we successfully applied the procedure
to a proof-of-concept setup to show that it is actually feasible and it
works. The promising results we were able to obtain with our simple
test case prove that the strategy is worth investigating deeper. Possible
directions for further study include the choice of the optimal parameter
space, especially in view of the fact that the CDI can likely be further
reduced; this means both choosing the correct type of transformations to
allow on the given shape and the number of parameters to optimize (the
fineness of the lattice). Different weights for the cost functionals are also
of interest.

76 Chapter 6. Optimization

Conclusions

The present work is characterized by two goals, which we developed si-
multaneously during the internship.

On one front we have been concerned with spectral analysis tech-
niques with applications in real-time post-processing of simulation data
and flow analysis in terms of the identification of coherent structures. To
target applications in the realm of High-Performance Computing we con-
sidered possible implementations targeting modern parallel architectures,
involving both processors and coprocessors. This resulted in the creation
of Spectre, a fully-featured application able to interface to existing Rolls-
Royce software and state-of-the-art parallel linear algebra libraries such
as PETSc and SLEPc. Spectre is designed to run both on distributed-
memory parallel architectures and coprocessors, either offline, reading
data from disk, or online, being integrated into another software. This
tool was fundamental for all the results presented in this work.

Investigating the spectral analysis of the simulated flow fields we
showed how these techniques can give a much deeper insight into the
characteristics of the flow under consideration. In particular, we in-
troduced the Proper Orthogonal Decomposition (POD) and the Dynamic
Mode Decomposition (DMD) and showed how both are able to identify
the main features of the flow and how they surpass a classic, still very
popular technique as the Q-criterion.

On a parallel track, we also setup from scratch a complete shape op-
timization procedure, combining capabilities from various pieces of soft-
ware. This involved defining the parameter space in terms of geometric
transformations via Free-Form Deformation, its exploration via Design of
Experiments and the configuration of the optimization algorithm, together
with a good deal of low-level scripting to glue all the parts together.

We were able to run a loop of the complete shape optimization cycle
and to report very promising results. This is valuable both as an achieve-
ment per se, as it provides a first, perhaps rough solution to the relevant
industrial problem of the optimization of the flow in an S-duct, and as a
proof-of-concept to demonstrate the feasibility of the approach and open
the way to a much broader range of applications where shape optimization
is needed.

77

78 Chapter 6. Conclusions

These two pillars are not independent of each other, but are connected
by the unifying problem of shape optimization. POD and DMD are not
limited to flow description, they also provide useful information which
can be turned into innovative cost functionals to drive shape optimization
procedures. These cost functionals are in fact defined moving from the
clearer understanding of the flow features that popular techniques cannot
give. In this work we described two possible approaches: one based
on minimizing the size of the separation bubble identified by the first
modes, the other one based on minimizing the volume of the vortex cores
identified by higher-order modes.

In our development of the shape optimization loop we were asked
to use some classic cost functionals (also called distortion indexes) to
drive the procedure. A possible direction for future development of this
work is to try and setup an optimization loop driven by cost functionals
defined via spectral analysis. The theory behind this approach has been
thoroughly described in this work, but time constraints prevented us from
putting it into practice.

The flow field we analyzed in this work, although relevant for the
industrial application it describes, is not extremely complex if compared
with, for example, the flow past a full turbine. Now that it served its
purpose as a first benchmark to prove the effectiveness of spectral analysis,
further developments clearly include the investigation of more complex
flows in order to better understand their features.

Bibliography

[AB04] M. Ahmed and T. Barber. “POD Convergence Criterion For
Numerically Solved Periodic Fluid Flows”. In: WSEAS ISA
2004 - Adv. Inf. Wirel. Commun. Syst. 2004, p. 6.

[BB10] N. C. Bissinger and T. Breuer. “Basic Principles - Gas Tur-
bine Compatibility - Intake Aerodynamic Aspects”. In: Encycl.
Aerosp. Eng. Vol. 1. Chichester, UK: John Wiley & Sons, Ltd,
Dec. 2010, pp. 1–11.

[BCG95] D. A. Burgess, P. I. Crumpton, and M. Giles. “A parallel frame-
work for unstructured grid solvers”. In: IFIP WG10 3.January
(1995), pp. 5–8.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. “The Magma Algebra
System I: The User Language”. In: J. Symb. Comput. 24.3-4
(1997), pp. 235–265.

[Ber+12] C. Bertolli et al. “Design and performance of the OP2 library
for unstructured mesh applications”. In: Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics) 7155 LNCS (2012), pp. 1–10.

[BHL93] G. Berkooz, P. Holmes, and J. L. Lumley. “The Proper Orthog-
onal Decomposition in the Analysis of Turbulent Flows”. In:
Annu. Rev. Fluid Mech. 25.1 (Jan. 1993), pp. 539–575.

[BJ00] N. C. Bissinger and M. Jost. “Thrust Vectoring for Advanced
Fighter Aircraft - High Angle of Attack Intake Investigations”.
In: DaimlerChrysler Aerosp. AG. May. 2000, 13(1–13).

[Cam] Cambridge Flow Solutions. BoxerMESH.
[CG95] P. I. Crumpton and M. Giles. “Aircraft computations using

multigrid and an unstructured parallel library”. In: 95 (1995),
pp. 1–21.

[Cha00] A. Chatterjee. “An introduction to the proper orthogonal de-
composition”. In: Curr. Sci. 78.7 (2000), pp. 808–817.

79

80 Bibliography

[CP08] C. Chevalier and F. Pellegrini. “PT-Scotch: A tool for effi-
cient parallel graph ordering”. In: Parallel Comput. 34.6-8 (July
2008), pp. 318–331.

[CPC90] M. S. Chong, A. E. Perry, and B. J. Cantwell. “A general clas-
sification of three-dimensional flow fields”. In: Phys. Fluids A
Fluid Dyn. 2.5 (1990), p. 765.

[Eas+09] S. J. Eastwood et al. “Developing large eddy simulation for tur-
bomachinery applications”. In: Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 367.1899 (July 2009), pp. 2999–3013.

[Fie88] H. Fiedler. “Coherent structures in turbulent flows”. In: Prog.
Aerosp. Sci. 25.3 (1988), pp. 231–269.

[Fis35] R. A. Fisher. The design of experiments. Hafner Pub. Co., 1935.
[Fis92] R. A. Fisher. “The Arrangement of Field Experiments”. In:

Break. Stat. Ed. by S. Kotz and N. Johnson. Springer New
York, 1992, pp. 82–91.

[GAS09] E. Garnier, N. Adams, and P. Sagaut. Large eddy simulation
for compressible flows. Reston, Virigina: American Institute
of Aeronautics and Astronautics, June 2009.

[GRM] M. Giles, I. Reguly, and G. Mudalige. OP2.
[Hol+12] P. Holmes et al. Turbulence, Coherent Structures, Dynami-

cal Systems and Symmetry. Cambridge: Cambridge University
Press, 2012.

[Jam08] A. Jameson. “Formulation of kinetic energy preserving conser-
vative schemes for gas dynamics and direct numerical simula-
tion of one-dimensional viscous compressible flow in a shock
tube using entropy and kinetic energy preserving schemes”. In:
J. Sci. Comput. 34.2 (2008), pp. 188–208.

[KA14] P. Kalghatgi and S. Acharya. “Modal Analysis of Inclined Film
Cooling Jet Flow”. In: J. Turbomach. 136.8 (2014), p. 081007.

[Ker+05] G. Kerschen et al. “The Method of Proper Orthogonal Decom-
position for Dynamical Characterization and Order Reduction
of Mechanical Systems: An Overview”. In: Nonlinear Dyn. 41.1-
3 (Aug. 2005), pp. 147–169.

[KG02] G. Kerschen and J.-c. Golinval. “Physical interpretation of the
proper orthogonal modes using the singular value decomposi-
tion”. In: J. Sound Vib. 249.5 (Jan. 2002), pp. 849–865.

[KK98] G. Karypis and V. Kumar. “A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs”. In: SIAM J.
Sci. Comput. 20.1 (Jan. 1998), pp. 359–392.

Bibliography 81

[Kos43] Kosambi. “Statistics in function space”. In: J. Indian Math. Soc.
7 (1943), pp. 76–88.

[LW12] A. Logg and G. N. Wells. Automated Solution of Differen-
tial Equations by the Finite Element Method. Ed. by A. Logg,
K.-A. Mardal, and G. Wells. Vol. 84. Lecture Notes in Compu-
tational Science and Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, p. 724.

[MEH12] T. W. Muld, G. Efraimsson, and D. S. Henningson. “Flow
structures around a high-speed train extracted using Proper
Orthogonal Decomposition and Dynamic Mode Decomposi-
tion”. In: Comput. Fluids 57 (Mar. 2012), pp. 87–97.

[Men94] F. R. Menter. “Two-equation eddy-viscosity turbulence models
for engineering applications”. In: AIAA J. 32.8 (Aug. 1994),
pp. 1598–1605.

[MSK10] V. Minden, B. Smith, and M. Knepley. “Preliminary implemen-
tation of PETSc using GPUs”. In: . . . 2010 Int. Work. GPU . . .
(2010), pp. 1–10.

[Mud+12] G. Mudalige et al. “OP2: An active library framework for solv-
ing unstructured mesh-based applications on multi-core and
many-core architectures”. In: 2012 Innov. Parallel Comput. 2.
IEEE, May 2012, pp. 1–12.

[Nar11] R. Narasimha. “Kosambi and proper orthogonal decomposi-
tion”. In: Resonance 16.6 (June 2011), pp. 574–581.

[NS13] A. A. Novotny and J. Sokołowski. Topological Derivatives in
Shape Optimization. Interaction of Mechanics and Mathemat-
ics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[OS04] S. Obayashi and D. Sasaki. “Multi-objective optimization for
aerodynamic designs by using ARMOGAs”. In: High Perform.
Comput. Grid Asia Pacific Reg. 2004. Proceedings. Seventh Int.
Conf. 2004, pp. 396–403.

[Pop00] S. B. Pope. Turbulent Flows. Cambridge: Cambridge University
Press, 2000.

[Sag06] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An
Introduction. Scientific Computation. Berlin/Heidelberg: Springer-
Verlag, 2006, p. 575.

[Sal+04] A. Saltelli et al. Sensitivity Analysis in Practice: A Guide to
Assessing Scientific Models. Wiley, 2004, p. 232.

82 Bibliography

[SC14] S. Shahpar and S. Caloni. “Automatic Design Optimisation of
Profiled Endwalls including Real Geometrical Effects to Mini-
mize Turbine Secondary Flows”. In: ASME Turbo Expo. JUNE
2014. 2014, pp. 1–13.

[Sch+11] P. J. Schmid et al. “Applications of the dynamic mode decom-
position”. In: Theor. Comput. Fluid Dyn. 25.1-4 (June 2011),
pp. 249–259.

[Sch10] P. J. Schmid. “Dynamic mode decomposition of numerical and
experimental data”. In: J. Fluid Mech. 656.July 2010 (Aug.
2010), pp. 5–28.

[Sha00] S. Shahpar. “A Comparative Study of Optimisation Methods
for Aerodynamic Design of Turbomachinery Blades”. In: Vol. 1
Aircr. Engine; Mar. Turbomachinery; Microturbines Small Tur-
bomach. ASME, May 2000, V001T03A087.

[SP86] T. W. Sederberg and S. R. Parry. “Free-form deformation of
solid geometric models”. In: ACM SIGGRAPHComput. Graph.
20.4 (Aug. 1986), pp. 151–160.

[SSG14] R. C. Schlaps, S. Shahpar, and V. G ĺummer. “Automatic Three-
Dimensional Optimisation of a Modern Tandem Compres-
sor Vane”. In: Vol. 2B Turbomach. JUNE 2014. ASME, 2014,
V02BT39A035.

[SZ92] J. Sokołowski and J.-P. Zolesio. Introduction to Shape Opti-
mization. Vol. 16. Springer Series in Computational Mathe-
matics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

[vTSF09] D. von Terzi, R. Sandberg, and H. Fasel. “Identification of
large coherent structures in supersonic axisymmetric wakes”.
In: Comput. Fluids 38.8 (Sept. 2009), pp. 1638–1650.

[WFV14] F. Witherden, A. Farrington, and P. Vincent. “PyFR: An open
source framework for solving advection–diffusion type prob-
lems on streaming architectures using the flux reconstruction
approach”. In: Comput. Phys. Commun. 185.11 (2014), pp. 3028–
3040.

[WRO94] S. R. Wellborn, B. A. Reichert, and T. H. Okiishi. “Study of the
compressible flow in a diffusing S-duct”. In: J. Propuls. Power
10.5 (Sept. 1994), pp. 668–675.

	An extended introduction
	Large Eddy Simulations
	Shape optimisation
	Post-processing techniques and spectral analysis
	Proper Orthogonal Decomposition
	Dynamic Mode Decomposition

	Graphical Processing Units
	OP2
	Plan of the work

	Computational Fluid Dynamics
	Compressible fluid dynamics
	Mass conservation
	Momentum equation
	Equations closure

	The Rolls-Royce software HYDRA
	Statement of the problem
	Methods

	GPUs and OP2
	More details on GPU architectures
	More details on OP2
	Testing OP2: the Heat application
	Finite differences version and CPU performance
	Finite volumes version and GPU performance

	Final remarks on OP2 and dynamic compilation

	RANS and LES
	Mesh assessment and parameters
	RANS
	LES

	Post-processing tools and techniques
	The identification of coherent structures
	Detailed description of POD and DMD
	POD
	DMD

	The need for a linear algebra back-end
	Detailed description of Spectre
	Mesh reader module
	Dataset module
	Distortion indexes and spectral analysis

	Validation of POD and DMD
	POD validation
	DMD validation

	Performance and scalability analysis
	Issues and improvements
	Spectral analysis results

	Optimization
	Shape optimization
	Free-Form Deformation
	Smart Optimisation For Turbomachinery
	Design of Experiments
	Summary of the optimization procedure
	Shape optimization results

	Conclusions
	Bibliography

